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PREFACE.

This book was begun with the hope of preparing something for

beginners in Algebra which would give them, in a narrow compass, a

philosophical and, therefore, a thorough start in their analytical

studies. By adopting a somewhat new arrangement of the subject,

it was found that the matter the author had in mind could be pre-

sented in such a small space, that he determined to extend the scope

of the work far enough to give all that is really necessary to enable

the student to prosecute with profit the higher mathematics. This

he did the more readily, since he is of the opinion that the further

course in Algebra presents rather more difficulties than any other

branch of mathematics, and that, consequently, the student at the

beginning of his analytical course can derive little real benefit from

his efforts to master it. In truth, so far as his information goes, it

is generally either omitted altogether, or so little appreciated by the

young student, as to be almost lost labor. It is, withal, so impor-

tant, that it ought to be insisted upon, and so should be taken up at

a later stage of the student's course, and then presented in connection

with the general philosophy of analytical investigations. Accordingly,

if this little work meets with approval, the author will be encouraged

to attempt the preparation of a supplementary work to meet this

end.

It is not necessary to say much with regard to this essay. It will

be found in great part novel in its treatment of the subject. The

discussions are considerably extended, and at all points the rationale
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of operations fully brought out. An effort has been made to pre-

serve the continuity of the subject, so as to present a harmonious

whole. The author hopes that it may, in some measure, prove the

means of stimulating the reasonmg powers of such lads as may

chance to use it, and that the mere mechanism of operations will not

content them.

University of the South,

Sewauee, Tenn., March^ 1874.
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The Elements of Algebra.

SECTION I.

DEFINITIONS AND EXPLANATIONS.

1. Algebra is a branch of Mathematics in which letters are com-

monly used to represent quantities, while the operations to be per-

formed upon them are merely indicated.

2. The leading letters of the alphabet (a, h, c, etc.) are used to

denote quantities whose values are given, or may be assumed at

pleasure. They are called known or arbitrary quantities.

Any numeral, as 5 or 25, is made up of a fixed number of units, and admits

of no change whatever in this regard : 5 cannot represent 25, or any other num-
ber than itself. But if we say that the letter a shall stand for any fixed number
whatever, it may have all possible values at pleasure. It cannot, however,

have more than one value at a time. Its several values must be taken in suc-

cession.

In like manner a may represent any kind of quantity, as pounds, dollars,

men, etc., but always in succession. The moment we attribute a specific nu-

merical value to it, it ceases to be an algebraic quantity for that particular value,

and becomes an arithmetical quantity. Whatever is here said of a, is equally

true of any other quantities, h, c, d, etc.

3. The final letters of the alphabet {x, y, z, etc.) are used to denote

quantities to be determined. They are called unknown quantities ;

or, when they admit of an indefinite number of values, in succession,

they are called variables.

Unknown quantities always depend for their values upon certain other quan-

tities; for example, if we say x shall be a quantity whose third part shall

always be equal to 5, the value of x will depend upon 3 and 5, and, although

unknown for a moment, readily becomes known.
If we should take two quantities, x and y, and say that their product shall

always be equal to a fixed number, as 100, x may be 5 and ^^ 20 ; or a; 4 and

y 25, etc. Here x and y may have any number of relative, but never any abso-

lute, values. In such a case they are called variables. The difference between

an arbitrary quantity and a variable is, that all arbitrary quantities may be

assumed at the same time and independently of each other; while variables

may be assumed only in relation to each other. It is manifest that x and y, in
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the above example, could not both be assumed at the same time, and without

regard to their relative values.

4. Since quantities, as long as they remain purely algebraic, have

no fixed numerical value, it is impossible to perform any arithmetical

operation upon them; such as addition, multiplication, etc. All

that can be done, therefore, is to indicate such combinations as it

may be desired to make. For this purpose certain signs are em-

ployed. The sign + indicates addition ; — , subtraction j x , multi'

plication; -r-, division ; =, equality.

If a represents the number of days one man works, and b the number another

works, since a may have any value, and b any value, we manifestly cannot tell

how great their sum must be ; but we can write them so as to show that their

sum must be taken, if their values ever become fixed ; thus, a-{-b (read, a plus b)

indicates that these quantities must be added together, when their numerical

values are determined upon. In algebraic language they are said to be already

added ; and algebra knows nothing of any other kind of addition. All actual

additions must be made by the laws, of arithmetic. The same may be said of

all other operations upon numbers.

To show that a quantity is to be subtracted from another, we write the quan-

tity to be subtracted after that from which it is to be taken with the sign —
between ; thus a—b (read, a minus b) shows that 6 is to be taken from a, or, as

is commonly said, b is subtracted from a.

To multiply quantities algebraically, we simply connect them together by the

sign X ; thus, axbxc (read, a multiplied by b, multiplied by c) shows that

their product is required.

It is far more usual, however, to write the quantities together, thus, abc, with-

out any sign between. Sometimes dots are used ; thus, a -h • c. When num-
bers are to be multiplied together the sign x must be used ; thus, 4x5.

To show that one quantity is to be divided by another, we may write them

thus, a-i-b (read, a divided by b). It is much more common, however, to write

the divisor under the dividend, thus, t .

b

The sign = is placed between quantities to show that they are equal ; thus,

a=b (read, a equal to b) shows that an equality subsists between these quanti-

ties. The quantity to the left of the sign = is called the First Member; that to

the right, the Second Member.

6. When it is desired to show that two or more quantities, already

connected by the signs plus or minus, are to be considered as a single

quantity, the sign ( ), called a j^f^'^^nthesis, is used; thus, {a+ h—c)

shows that the several quantities within are not to be separated, and

are to be considered as a single quantity so long as the parenthesis

remains.

. This sign often takes the form [ ], or
{ }

, called brackets. A bar over
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several quantities, thus, a + b—c, means tlie same thing. Also the quantities

may be written thus — h

X
; here the quantities on the left of the tar are to be

severally multiplied by the quantity, x, on the right.

6. The sign >, indicates inequality.

The opening is turned towards the greater quantity ; a> b (read, a greater

than b), shows that a is greater than b; a <b, shows that a is less than b.

7. The sign cc, shows that quantities connected by it vary to-

gether; thus, a cc b means that a and b increase or decrease to-

gether.

8. The sign .*., is an abbreviation for therefore, hence, or conse-

quently ; V means since or because.

9. An Algebraic Expression is any quantity or combination of

quantities written in algebraic language.

Thus, -T is an expression for the quotient of any two quantities
;
{a-\-b)c is an

expression for the product of the sum of two quantities by a third quantity.

10. A Factor is any quantity which enters an expression as a

7nuUi2)lier.

Thus, in the product abc, a, b, and c are each factors ; so also ab, be, and ac

are factors of the same expression. Unity enters every expression as a factor.

A factor may be made up of several quantities connected by the sign + or —
;

thus, in {a + b)c and (a+b){a—b), the quantities (a+b) and {a—b) ?iTe factors. In

fractional expressions unity divided by the denominator, or by any factor of the

denominator, is a factor of the expression ; thus, in ^ , ^ » is a factor of r ; in

——
, - , - , and 7 are each factors.

Stti' 3 a b

11. A Co-efficient (co-factor) is any factor of an expression.

If a numerical factor enters an expression, that factor is usually written first,

and is especially spoken of as the co-efficient. Thus, in the expressions ^ab,

%cd, and —^ ; 3, |, and \ would be called the co-efficients, respectively.

Literal factors, however, are often called co-efficients ; thus, in ax, r • x, and
b

bey ; <^> T > and be, would be called co-efficients.

So, also, numerical and literal factors taken together may be spoken of as

co-efficients ; thus, in the expressions ^ax, —-
, and 3(af — b)z ; 3a, — , and

3(a— 6) would be called the co-efficients of the unknown quantities, respectively.

Since multiplication is but abbreviated addition, each factor of an expression
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shows how many times all the other factors enter it additively ; thus, in the ex-

pression Sab, the 3 shows that <zb enters the quantity three times by addition, so

that it may be written ab-\-ab-\-db.

So if we had a-\-a-\-a-\-a we could evidently write 4a instead. t + t + t

, .,^ ^a Sa a a a a ^

,

i x 2a
may be written Sror-j-. r + T — r + r must be equal to -7-

.

00000b b

If we had {a+b)+{a+b)+ written c times, we could write c{a+b).

Here c or (a+b) may, either of them, be regarded as the co-efficient.

12. Aq expression composed altogether of simple factors is called a

monomial

By simple factors is meant those which are composed without the aid of the

signs -f- or —

.

ab, — , dab, are monomials. A monomial is spoken of as a term, especially

when found connected with other quantities by the sign plus or minus ; thus,

in the expression 7a>x -^+ff> any one of the three monomials which enter it is
ca

a term. Sometimes complex expressions tied together by the parenthesis, or

otherwise, are called terms: thus, in a—(b+c) and r— , the expres-
c —c

sions (a + c), and ^ may be called terms.
c b—c

13. A Binomial is an expression composed of two terms ; a T7nnO'

mial has three terms. a+ h, ^ai—Sc, t 5 are binomials.
b ac

ac + J
— g, and 4a — 5c + -7-, are trinomials. A Polynomial is

an expression composed of two or more terms; thus, a-\-b, 6ab

2 a
H d, a-hi + c — 1+ etc., are polynomials.

a

14. When the same factor enters an expression more than once, as

in ^aaaahhccc, the expression can be greatly shortened by writing

any snch factor but once, with a small figure to the right, and a little

above, to show the number of times the quantity enters as a factor;

thus the above expression would take the form, Sa^b^c^, read, tlu^ee a

to tJie fourth power, b to the second power, c to the third poiuer. The

small figure so used is called an Exponent or Index, because it shows

the number of times the quantity, to which it is affixed, enters as a

factor.

It is important to distinguish clearly between exponents and num-

bers which enter an expression as factors, called co-efficients. In the

above example, the 3 written first is a multiplier, whereas. the small
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figures do not enter the expression as quantities at all ; tliey are

merely signs, to show how many times other quantities, namely a, h,

and Cf enter as factors.

A71 exponent, therefore, is any quantity used to show how many
times another quantity must be taken as a factor.

Letters are often used as exponents; thus, a'y S", (6> + &f, « , 6", (read, a

to the T. power, etc., a to the one-half power, b to the m divided by n power.) Any
symbol of quantity may be used for the same purpose.

15. Terms are said to be Homogeneous, when they contain the same

number of literal factors; thus, ^aH^, 2cx^, 26x^y^, abcxy, are all

homogeneous. They are said to be homogeneous with respect to a

certain quantity or class of quantities, when there are the same num-

ber of such quantities in each ; thus, ax^, h^cxy, ^ay^, are homogene-

ous with respect to the unknown quantities which enter them.

A polynomial or an equation is homogeneous when all of its terms

are homogeneous.

16. The Reciprocal of any quantity is unity divided by that quan-

tity.

Thus, -, —7> -^> are the reciprocals of a, a^d, and a^h.
a a—b a^b ^

17. The Square Root of a quantity is indicated by placing over it

the sign <y/ ; when any other root is to be taken, a small number is

written to the left and above the sign, to show the degree of the root

required; thus, ^, indicates the third root
; ^, the fourth root;

^, the 7ni\\ root, and the sign is used thus, Va, y^oH^, "s/oH + d,

a-\-b
T . The small figure used to show the degree of the root re-

i/
quired, is commonly called the index.

This sign grew out of the custom of the older algebraists of writ-

ing r, signifying root, before the quantity whose root was required.

When used before an expression tied together by a bar, thus,

r ' a + b, it would take very nearly the form of the present radical

sign.
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SECTION n.

ALGEBRAIC TERMINOLOGY.

18. Algebra has a language of its own, which must be thoroughly

mastered before the subject can be at all comprehended. In the fore-

going Section we have, so to speak, learned the alphabet. "We may
now proceed to use it. Let it be borne well in mind that it is all pure

conventionality. Any other signs or symbols miglit have been used

;

but now that we have agreed to use those already explained, we must
adhere to them strictly.

19. First let us translate from English into Algebraic symbols.

1. Add together any two quantities.

Explanation.—Since tliey must be any two quantities, we cannot take partic-

ular numbers ; and since numbers from their nature are always definite, we
cannot take numbers at all. a and 6 are two such quantities, and since their

values must remain undetermined, we can only write, a + h. Any other letters

would have done as well.

2. Write the difference of any two quantities. Ans. a—5.

3. Write the product of any two quantities. Ans. ah.

4 Write the quotient of any two quantities. Ans. 7-.

5. Write the product of the sum and difference of two quantities.

Ans. {a+ h) {a—h).

6. Write the quotient of the sum and difference. Ans. ^—^.

12emar^.—When a quantity has 2 for an exponent it is often read square, and

though, perhaps not strictly correct, it is convenient to retain the custom
;

thus a"^ may be read a square. Wlien a polynomial has 2 for an exponent, as

{a + hY, it must be read a plus 6 squar^Ji. In like manner a^ may be read a

cube ; {a + V) ^, (a + &) cw6ed.

7. Write the sum of the squares of two quantities. Ans. a^ + 1^.

8. The square of the sum. Ans. {a + by.

9. The square of the difference.. A71S. {a—hY .

10. The square of the quotient. Ans. ^-j.

11. The sum of the square roots. Ans. Va + Vb.

12. The square root of the sum. Ans. ^a+ b,

13. The product of the square roots. ^
Ans. ^/a X V^ or \/a* ^/h.
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14. The square root of the product.

15. The quotient of the square roots.

16. The square root of the quotient. A71S.

17. The square root of the product of the squares.

A71S. ^Ta^b^.

18. The square root of the product of the sum and difference.

Ans, "^(a+ b) (a—b.)

19. The cube root of the product of the cubes. A7is» ya^ b^,

20. Translate the following expressions into English

:

1. a—b, a-hb, a^-\-b^, ab, a^b^, %.

2. a^-b^, {a-by, a^+b"-, (« + ^)S {a-{-b) {a-h).

a^ a+ b a—b a+b (a+ b)^ a— b

¥'~a~' b '^^O'a^Tb' (a-b)^'

4. V^+v^, V^, Vb,Vab, ^'|/p V"^-^ Va^-\-b^'

r i /(i+b , faVb . /a—b . fa^

vw--

21. Translate the followinor into alsrebraic lan^uao^e :

1. The square of the sum of two quantities is equal to the square

of the first, plus twice the product of the first by the second, plus the

square of the second. A71S. {a + b)^ = a^+2ab + b^.

2. The square of the difference of two quantities is equal to the

square of the first, minus twice the product of the first by the second,

plus the square of the second. Afis. (a—b)^=a^ — 2ab-^b^.

3. The product of the sum and difference of two quantities is

equal to the difference of their squares. Ans. {a + b){a—b)=a^— b^.
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4. The quotient of the difference of the squares of two quantities

by the difference of the quantities, is equal to the sum of the quanti-

ties. ^ «2— Z>2

Ans, T— = a+ o,
a—o

5. The quotient of the difference of the squares of two quantities

by the sum of the quantities is equal to the difference of the

quantities. . a^—h^^ Ans. —z=a—o
a +b

6. The product of the sum of two quantities by the first is equal

to the square of the first, plus the product of the first by the second.

A71S. {a-{-b) a = a^ -\-ab.

Let the algebraic expressions in this article be translated back into

English.

22. Translate the following expressions into English:

1. Va X Vb = Vab.

Ans. The product of tlie square roots of two quantities is equal to the square

root of the product.

Vb r & , wV ^

3. {Va-\-Vb){Va — Vb) = a—b .

4. (v^ + a/^)^= a-{-%Vab -[-b.

5. {^/a-Viy = a-%\fab-\-b,

6.Va=ai, V~a=ai, ^b=b^^ ^a^ = ah

n

„ w/ n/

—

ran f— mn/~ — m / n j ; ""'/I
8. j/ V« = V^, V« = a'"", y^/a-' =//-.•

9. {a +b)^=Va^, [(«+5)8]i = a+ J.

10. {d+ bi){a^-hi) =a-b.

23. Express in algebraic symbols the following :

1. Divide a certain quantity into three equal parts.

a a a
Ans. 3' 3'

3-
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2. Divide a given quantity into two parts, one of which shall be

three times the other. . a 3a
A.ns, -, —

.

3. What two numbers are those which differ from each other by a ?

Ans. X and x—a', or, x and x-\-a,

4. The a part of a quantity added to its h part is equal to m.

X X
Ans, — + r = 't^*

a

5. Three times a certain number minus that number is equal to

f the number less a. Ans. 3x—x = ^x—a.

6. The sum of two numbers is to the difference of those numbers
as m is to n, Afis. a + b : a—h :: m : n,

7. The ratio of the square of the sum of two numbers to the sum
of the squares of those numbers is as m is to n.

Ans,
(a + b)^ m

24. If at any time particular values are given to the quantities in

an expression, the indicated operations may then be performed. A
result so found is called the 7iiimerical value of the expression. FoiF

each new set of values for the several quantities which enter an ex-

pression, there will be a new result as the numerical value of Siuck

expression.

The numerical value of the expression ab — -, when a= 4, and b = S, gives

4x3 — 1 = 6, which is the value of the expression in this case.

It a = 7, and & = 5, we should have 7x5—^ = ^i^.

Find the numerical values of the following, letting a = 1^ Z* = 2,

c = 3, and c? = 4 :

^ ^ , cd ab
,
a-b {a^bY 2f?

1. 3ab — -r, — + -t—t^ -—j"^ x—

•

b % 4:cd^ cd a

o
(«+ J)(«+ J), ^^L^,[{a+ h)(c-a)-\d.

^ Vb+ a Vd—c abed Vc —
3.Vd[aib+c)]V-a. -y^x-V^' V^^^-^6^

4.
6b-3 ^ 1 l((^_^i\(^^^\ {a + b-2){c-a + d)

4iC—a b* c\b d)\c aj /a c\ /a a\ '

\b'^~d) \b~c/
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SECTION III.

TREATMENT OF THE + AND - SIGNS.

25. All elementary operations of Algebra fall under one of the

two following heads, namely

;

I. Indications.

II. Transformations,

As we have seen in the previous section, Indications are the opera-

tions of expressing in algebraic language whatever may be stated in

spoken language.

Transformations comprise all changes which may be lawfully per-

formed upon expressions after they are written in algebraic symbols.

The simplest transformations are those made upon quantities

connected by the signs plus or 7uimis.

Thus, a+ a+ a-\-a, may evidently be written 4^. This is a change

of form without a change in the numerical value.

a + a—a-\-a= 2a/\s another such change.

Algebraists have commonly called these transformations addition;

but manifestly the algebraic sum is altogether accomplished in the

operation of Indication. The quantities are no more added after

the form is changed than when they are simply connected together

by their proper signs.

26, The Nature of the Sigms + and -.

Let US now try to understand the nature of the signs + and —

.

Their first and most obvious use is to connect quantities together

so as to show that they are to be added or subtracted. But, then,

certain quantities may, from their nature, be additive, while others

are subtractive, before any combination takes place. For examjole,

a man, casting up his accounts, would consider all amounts due him

to be augmentative, while all amounts which he owed would be

diminutive of his capital. The first class would take the sign + ;

the second the sign — . It is, however, a mere matter of agreement

as to which shall be called plus and which minus ; but they are al-

ways contrary the one to the other, so that the establishment of

cither determines the other. Quantities affected with the sign + are

called Positive; those with the sign — are called Negative.

To illustrate this, suppose we take a right line, ab, and agree to

reckon all distances

a h
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to the right of the point o as positive ; then, of necessity, those to

the left Avould he negative. If we had determined to reckon dis-

tances to the left of o positive, those to the right would have been

negative, and so in general.

The sign of a quantity must be known before we can use it in com-

bination with other quantities. Plus is always understood where no

sign is written. A quantity with the signs + and — , thus ±a, is

to be used first positively and then negatively.

27. To find th.e alg-ebraic sum of several quantities.

When quantities are given with their respective signs, to find their

aggregate, or, as it is called, their algelraic sum, we have this simple

principle:

Write the several quantities one after the other m a7iy order, con-

nected by their respective signs.

Examples.

1. Add, ^ah, 4,a^h, '^ah, —ah, and —ba^h.

Ans. dah + 4:a'^b'{-2ab—al)—6a^.

2. Add, —^a, —j—, —be, ci^V^, and ^a.
d

A ns. — \a—bc^-a^h'^-{- ^/a.

Remark.—It is usual to place a positive quantity at the beginning.

3. Add, i^L^^ u, -^/Wa, j^, and (ci^b){a-b).

Ans. (f^±^ + 24-V67^+ j|^ + (6? + J)(a-5).

4. Add, _-, _,-_,!, ^,(^-j, and
(^-j

.

5. Add, 7«2_ "lalh, 3^2+ 4«J^, and 2«—«"+ h(^'

Ans. 7a^— 2abi+ 3a^ + 4:ab^ + 2a'-a'^+ 6ak

28. To reduce a polynomial to the least number of terms.

Terms are said to be like or similar when they contain the same

letters, and the several letters have the same exponents, respectively.

2a^6V and 5a'^b"'c^ are like terms. The algebraic sum of several
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quantities pan often be much shortened by gathering into one all

the terms which are alike.

For example, 3ai-h4:a^b + 2ai—ab—6a^b may be written 4:al}—

a^h'y for, 3ah and 2ab, both being +, give bah', but —db (that is, one

ab to be taken away) leaves 4rt^; so 4:a^b less S^^J, leaves one a^b

minus.

So in general, to reduce a polynomial to the smallest number of

terms we may say

:

Gather like terms together, giving the results their proper signs,

respectively.

Great care must be taken to combine only terms whose literal parts are en-

tirely the same, and to add and subtract the numerical parts according to tlieir

signs.

Examples.

Eeduce the following polynomials to the smallest number of

terms

:

1. 2«-4«2j2+3^ + 5«2j2_4^. j^ns. a + a^^,

2. 3J^c-2Z'i-c+ «'"-J'"+' + 5a'"-2^>'"+\ Ans. bic+ Qa'^—W^\

3. y + ^ + 2t— 3— + ^ + 24—12.
b a ^ b a ^

. da .cd
.
^-

Ans. -T- — 2— + 12.
b a

4. da^ci-\-6a''b''-a^ci+ 6aib+2a^ci-2a'^b*'-ah.

Ans, 4«2ci+ 3a'"5"+5afe.

5. a^+2ab-{-b^+a^-2ab + b^=U^+2b^,

6. a^-2^/ab + b + a-2Vab+ b=2a-\-2b.

7. ^^+2^/ab+ ^/b+ Va—2Vai + Vb=2Va^2Vh.

8. 2(a+ &)i-3(a-J)i + 5(«+ &)i-2(a-5)i.

Ans. 7(a + J)i-5(a-J)i

9 3
V<^ + ^ /a—cY Va-\-b /a—cy ^^""^

10. 25a2j3^+ i2a'»J2-.5a2J3c+ a"'Z>'-3a2j3c+5a'»J^

Ans. 17aH^c+lSa'"bK
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29. Subtraction of quantities.

To subtract a positive quantity, as +5 from a, we should, strictly,

write a— ( + ^), using the parenthesis to prevent the confusion of

signs; but since +^ is but another way of writing b itself, we may
drop the + sign, and the parenthesis v/ith it, and write a—h When
the quantity to be subtracted is already negative, as —J, the indica-

tion is made in the same way, «— (—5); but we cannot, as before,

drop the — sign of the quantity, since, in that case, we should have

for a result, a— ^ as before, and should thus have taken away, not

—hy but +b. To take away a negative quantity is really to augment
the quantity from which it is said to be taken ; thus, (25—5) is 20;

now from (25—5) remove the —5, that is, strike it out, and, of course,

the 25 will be left. By taking away —5 we have really added 5 to

the quantity (25—5), from which it was taken; thus, 25— 5— (—5)
=25—5 + 5=25, or in general, a— I)—{—b)=a—b + b=a.

A man who is insolvent owes, say, a dollars. It would be the same

thing to say, he has —a dollars due him. To subtract or take away

any part of his debts, is really to augment his fortune by just that

amount ; and so in general.

To suhtract a negative quantity, is to add the numerical value of

the quantity ; or practically.

To subtract any quantity, write it after the quantityfrom which

it is to be taken with its sign changed.

Examples.

1. From a take b, ab, —d, db, —2ab, +d, and then simplify the

resulting expression.

Ans. a—b—ab-\-d—db-\-2ab—d=-a—4:b + ab.

2. From a + b take b, —c^, 3c, —2b, and simpHfy.

Ans. a+ b-b-^c^-dc+ 2b=a+ 2b-\-c^-3c.

a ct cd"'

3. From 3. rr —cd take -. —cd and j- .

. .a ^ a
^
^ a"^ ^a a"^

Ans. ^--cd-^^cd-^ = 2^--^^.

4. From«+ A/«^ +^ take a—^/ab and —J.

Ans. a-\-\^ab-]-b—a+^/ab^b = 2Vah + 2b.

5. From ai-bi take 2a^, -U^, -5a^, and b\

Ans. ai-bi-2a^ + 3bi + 6ai-bi=ia^-{-bh
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6. From 2 Va+SVb take —Va, 2^/h, iVa, and —Vb.
A 7is. 2 '\/^+ 3 ^/T)+ Va— 2V^— JV« + v^= | 'v/^+ 2V^.

7. From^ take -3.^ 4.(^±^ and -4.^
c 6; ' c ' ^ c '

C 6' C "^ C ^ C '

y~T
8. From 'V^a^— c take —%^/ah, 5c, —-— and —6c.

2

3/—

7

9. From v^a—2a-v^ take Qy'a, — 2«v^, and — Sy^^;.

Ayis. *{/«— 2flj'V^^—9v^ + 2'\y^4-8v^a= 0,

30. Subtraction of polynomials.

To indicate the subtraction of any pol3momial, we have but to

write such polynomial within a parenthesis, and connect it by the

— sign with the quantity from which it is to be taken ; thus, to take

a + h—c from dy we have d—{a + l)—c).

Now the minus sign here means that we are first to get the alge-

braic sum of all the quantities within the parenthesis, and then take

this sum from d. Manifestly the same thing can be accomplished by

taking, first a, and then h, and then —c, away from d', thus, d—a—
h + c. The parenthesis has disappeared, and the several quantities

have changed their signs. We may then say, that,

To subtract a polynomial from any quantity, we have but to write

the several terms in succession after the quantity from lohich it is to

be taken with their signs changed, ^

Examples.

1. From 3a—25 take a+4Z» and simplify.

Ans. da-2b—a-U=2a—6b,

2. From a"—a take a^-\-a''—a^.

A71S, a''—a—a'"—a'' + a^=a^^a'^—a.

3. From a^b-'+ l take -3a'v,b-'+.l.

A71S. a'^b-'+ l + 3a^b-''-'l=4:a'^b-\
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4. From Sa^-'cUake 3^^-^+ ^ «6'«+^-'—y a«.

5. Simplify a^-lf^-{%a^-y--\).

6. Simplify a'^ -'lan^c-\-{a'^ -^an^c-\-%).

Ans. a^-laH^c-^-a^ + laH^c-^=-l.

7. Simplify a;2-a;-l-(-a;2+a; + l).

Ans. x^—x—l+x^—x—l=2x^—2x—2.

HemarJc.—It will be observed tliat in removing a parenthesis from a poly-

nomial when it has the minus sign before it, we change the signs of all the

terms within. When the sign before the parenthesis is plus, the parenthesis

may be removed without any other change.

Eemove the parentheses and simplify the following

:

8. a—{—'b^c—a)—a + h—c + a=2a-\-h—c,

9. l + {a-l)— l)= l + a—h— l=a-l).

10. a— {-a)= 2a\ «— (-1)= « + 1.

11. 3«8.Z>-|--r-3^2j + |j =

12. «*-l + (-«*4-l)=0.

13. -J + l-(-t- + l + v^O= -V^.

14. ar-'-h^-ia'^' -lii \-l)= -l,

15. l—^a^-{l—^a)=2—a.

16. a—{—a)-{—a)-{2a)= a.

Bemark.—We may put a parenthesis upon the algebraic sum of several quan-

tities without any other change, provided that the positive sign stands before the

parenthesis ; but if the negative sign occupies that place, the signs of all the

terms within must he changed.

Enclose the following in parentheses, first with a + sign, and

then with a — sign.

1. a—'b + c={a—l + c)

= — {—a-{-h—c).

6a^b-
2a

J
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3. a={a); l—a={l—a); 0^= {cT)

= — {—a),l—a——{—l + a), =—(—«»»).

Remark.—Where there are several parentheses or brackets, one within another,

in removing them begin by removing the outer one, and then the next, and so

on. We may, however, begin with the inner one.

Examples.

Eemove the brackets from the following

:

1. -[a-{a + h-l)'] = -a-\-{a^'b-l)=h-l.

2. a—[—{-{a + l)}']^a-\-{-{a + l))]=:a-{a + l)=a-a—'b=— l

3. l-[a-{a^-'b)-\-{a-h) + 'b'] = l-a + {a+ h)-(a—'b)-h = 1-a

4. l-{ + [-(-l)]}=0.

5. -(H-(-l))=.0.

The management of fractional quantities in Algebra and Arith-

metic is entirely the same.

Now, since we can separate a fraction, such as || into as many
partial fractions as we please to break the numerator into parts, thus

A+ t\+ tt-? ^^^ ^^y ^^ ^^® same thing with an algebraic fraction.

-c,
, a-\-b—c , ... a b c

h or example, ^— , may be written, ^ + -7—) •

Now, if such a fraction as this, having the algebraic sum of two

or more quantities for its numerator, has the — sign before it, audit

should be thus broken into parts, the removal of the division bar

will act altogether like the removal of a parenthesis. The place of

the bar must, therefore, be supplied by a parenthesis ; or the signs

of the partial fractions must all be changed.

Examples.

Separate the following into partial fractions :

d '~~\d'^d~dy~' d d'^d'
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2.
d ~ d ^ d d

^aH-d^ /2a^b
" \3a«c2

3.
da'^c^

4.
-ai +b_
a+ b ~

ai b

a-\-b ' a+ b

Remark.—The sign — standing before the division bar shows that the whole

fraction is to be subtracted ; or, in other words, that, after all the operations

indicated are performed, the result is to be subtracted; but when the sign

stands before the first term of the numerator, as in the last example, it affects

only that term.

5.

6.

5 4-4«- .8*

5"

-5 4« 2i

5"^
+

5„. 5"*'

= — (-
5

5^ -V-
5+4^-2i / 5 .4a_2^\_5__4^ 2^

5'V~" 5"* 5"
"^ 5"''

/a + b ^c\_ fa b ^\ —^^ ^ .^
Ka—b d)~ \a—b a—b d)~ a—b a—b d

ft
r 0^ + ^ ^—

^

1

r ct b / fl? 5 \1_b

b a

(a^-bY [a-Vby {a-^bY («+ &)"*'

31. Meaningr of the terms SUM and DIFFERENCE.

The terms Sum and Difference must be understood in Algebra in

their largest sense. To add does not necessarily mean to augment,

nor does subtraction always mean a diminution; thus, —b added to

+ 5 gives ; while —b subtracted from +5 gives 2J.

By the sum we are to understand the result obtained from con-

necting the quantities by their own signs ; a difference results when

certain terms are connected with their signs changed.
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SECTION IV.

MONOMIALS-EXPONENTS AND THE SIGNS x AND -»-.

32. An Exponent is, by definition, a sign which shows how many-

times the quantity to which it is affixed is .to be reckoned as a

factor.

Exponents may be entire or fractional, positive or negative.

33. Entire and Positive Exponents.

53 is the same as 5 x 5 x 5, or 125 : a^ is but another way of writing

a ' a * a-, a^b^=a - a - b - h - h-, {a + hY = {a + 'b){a^l))', ('\/a)^=
V^ • V^ • Vfl5; aJ^-=a - a ' a - a written m times.

Quantities united by the sign x or -^ are simply made co-factors

;

thus, da^bx^ab^ shows that the continued product of all the factors

is required. The sign x may, however, be dropped altogether and
the* quantities be written together, where no confusion is like to re-

sult; thus, Sa^boab^ ; but in such a case as this it is usual to retain

the X or use the •

Now the order in which factors are taken makes no difference in

the product; so that we may write the above expression thus,

3 X ba^abb^. It will be observed that the sign x must now be used

between the numerals to prevent mistake.

But here we have the indicated multiplication of two factors which

can be actually performed ; so that 15 can be written in the place of

3x5.

We see, further, that a enters three times as a factor, so that a^a

may be written a^. In like manner bb^ is equal to Z»*. It is thus

manifest that ^aHxhab^=.lhaH^,
We have simply multiplied the numerical factors together and

written each letter once with an exponent equal to the sum of the

several exponents of that letter. Transformations of this kind are

called multiplication.

We may say, then, in general, that

:

To multiply monomials together, multiply the numerical factors

together, and after this product write the several letters tvhich e?iter

the ynonomials, giving to each an exponent equal to the sum of all the

exponents of that letter in the several terms.
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Examples.

1. Multiply 4:a^dc by 5abc^. Ans, 20a^h^c^.

2. Multiply a^d\fhj 2ad^p. Ans. 2a^d^fK

3. Multiply x'^y by x^^i/. Atis. x^'^yK

4. Multiply x"'~^y by xy'^'^K
,
Ans. x'"y"'-^\

5. Multiply oax""' by Sa^'x^ Ans. loa''+^x"'+\

6. Multiply 2oa^b'c by da'b'c. A7is. Toa^+'b'^+'cK

7. Multiply ^aH^ by ^ab^. Ans. {aHK

8. Multiply f<?/" by |a^/y;2'. Ans. ^a'+Y^'z^

9. Multiply a'"Z»'*c^ by abc. Ans. «'"+'^"+'c^+^

10. Multiply 4«'"+"Z> by fa'^+'^J. ^/i5. ^^a^^^'^^.

11. Multiply ^-+'»^>«+» by 4a;'^"5^-". ^?i5. J^c^'^Z*^

12. Multiply a;"*-'»+i^p-? by ^''-'"-'Z*?-^. ^?^5. a;°Z>°.

Remark.—We shall find that the same laws govern the management of

fractional and negative exponents as when they are positive and entire, so that

we may employ them in our examples at once. In finding the sum of fractional

exponents, let the student remember to apply the rules for the addition or sub-

traction of fractions in arithmetic.

13. a^xai=^a.

14:. abcxaib2ci=a^b^ct.
,

15. Ja;ii/tx-Jaf?/i=-J-2;"*+iy.

16. 6x^y^zxaxyizi=6ax^yiz2.

17. a-'bcixa^b-'ci=ab-'c.

m p m, p

18. 25a"'Z>« X 6a%=126a'^+''bn,.

19. a"'b''cPxa-"'b-^c=a°b°cP+\

^^ a^b'x-' a^b^c a^""" b'^+'cx-'^

20. —-— X—^-=
10

34. The law of signs in Multiplication and Division.

So far no mention has been made of the signs of the terms multi-
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plied together. Let us now inquire what effect these signs will have
upon the product.

In the multiplication of two quantities we simply repeat one of

them additively as many times as there are units in the other. Let

us, then, multiply two quantities, a and h, together, and first let them
both be positive. + a must be added to itself until there are alto-

gether as many times a as there are units in 5, so that we shall have
\- ah.

Thus we see that,

The product of hvo positive quantities is positive.

Now, let a be negative and h be positive. — a must now be added

to — a until — a has been repeated b times. But — a and — a gives

— 2a; — a and — a and — a gives — da; and when taken b times

we must have — ba.

If a had been positive and 5 negative, — b would have been taken

additively a times, and the result would have been again — ab. Thus
we see that,

The product of a positive and negative quantity is aliuays

negative.

Now let us take a and b both negative. We shall have {—a)
(— b). But {— a) = — (+ a) ; and so we may write — (+ a) {— b)

= — {— ab)= -\- ab. Thus we see that.

The product of a negative quantity by a negative quantity is

positive.

Since the product of the divisor and quotient must always produce

the dividend, the same principles hold good in division.

The law of signs may then be summed up as follows

:

In multiplication and division like signs give plus, and unlike

minus.

Examples.

1. Multiply haH by - "iah^. Ajis. - dhah^

2. Multiply — J«"^»" by a'^b. Ans. — 4^""^'"+'

3. Multiply — la'^b'' by — a'^b. A71S. J«'"'Z>"^',

4. Multiply Jft'"^'* by — oa'^b. Ans. — la^"^**-^

5. Multiply Ja'"Z>" by Irt'"^'. Ans. |a""Z>'* + *

6. Multiply -da'^+'b-' by oab^'c. Ans. - ^toa^' + 'b'^-'c
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7. Multiply ahic^ by - Sa'h'h'n, Ans, - da°I)°c°.

8. Multiply-a°b-'c by-1. Ans. a^'h-'c.

9. Multiply «Z>°c~^ by «~'*Jc. A71S. a}-''hc°.

10. Multiply ^Z'°c-^ by «5-°c. Ans. a\

RemarJc.—When a quantity lias an exponent zero, such exponent shows that

the quantity does not enter as a factor at all. It may therefore be omitted alto-

gether. Remember, however, that the quantity itself is not zero. Any quantity

to the zero power is thus 1 ; but we shall see further upon this point.

11. abxabx —ab = —a^b\

12. —«xi X —ax3 X ax^ = a^x ^ .

13. -2arh^ X -Zah x -^.a-^^h "^ = -24«J.

14:» xnygXX'jyx —x^y^=—xn ? ^yq n 3,

15. 10a'"-"^»-^x -«° = -10a'^"'b-P.

16. a{—a){—a)a{—a) = —a\

17.(-l)(-l)i-\)(-a^)^l.

18. (-«»)(- J°)(-c°) = - 1-

19- tt)°(i)°C)°V^ = V^-

35. Operation upon Fractions.

It has already been said that an algebraic fraction does not differ

from a numerical fraction in principle.

In the treatment, therefore, of algebraic fractions, we have but to

apply the laws of arithmetic to those already established for the

management of algebraic symbols.

Examples.

1. Multiply
I

by |.

2. Multiply- I by-?.

3. Multiply- I by-

1

4. Multiply — - by -T

.

Ans.
db

Ans, — ac

M

Ans.
ac

bd

Ans. —
b^



4.71S.
-ah
-bo c

—
-a^b^

~

Ans.
15af»

2y^

An.
^x=-y
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5. Multiply —- bv —

.

— b " c

6. Multiply _ - by—3

.

Ans,

7. Multiply-^ by^.
m

a Multiply^ by -1.
3^^.

a —a a —a_a^

,- abc —1 ^
10. —- X -^ = 1.— 1 abc

b"" a-"" a-^'b^

12. — X y^ X - = 1.abb
36. The Powers of Quantities.

The Power of a quantity is the product obtained by using the

quantity a certain number of times as a factor ; thus, the second

power of 3 is 9, the third power of 2 is 8. a^ is the second power of

a ; «^, the third power ; «'% the mth power of a.

To form the poicer of any quantity multijjly the quantity by itself

as many times as there are units in the exponent of the power less

one.

A practical rule for finding the power of a monomial is

:

Raise the numerical factor^ if there be one, to the required power

and multiply the exponent of each letter by the exponent of the power.

This process is called Involution.

Examples.

1. (^2)8, (2«)5, (-3.^*)', {-ixi)\ {-a-^y, (a-)% 0".
3 pm

Ans. a*. 32^5, o.r, —^x^, —«~S «^"'% ci » .
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Remark.—It will be observed tliat tlie sign of an even power must always he

positive; and

That tlie sign of an odd power must always be the same as the sign of the

term itself.

=•©©.<-"•'. <-)'.(t)-.H)'.(-3-.

^•(^)'
(I)'

'-"*'-"•©•
(i)-

''©©"'•(-9"G)-=(-3*.W.£f|-

37. The Boots of Quantities.

The operation of extracting the root of a monomial is just the re-

verse of that of raising it to a power. Practically,

Extract the required root of tlie 7iu7nerical factor, if there ie any,

and divide the exponents of the literalfactors hy the index of the root.

This process is called Evolution.

If a quantity be raised to an even power, the sign of the power

must be plus, whether the quantity (that is the root) is positive or

negative; thus,

a^=ay,a or —ax —a,

a^=axax ax a or —a x —a x —a x —a.

Whence it follows, that when the index of the required root is

even, the root may have either the plus or minus sign ; it is there-

fore given both; thus,

\^= ±a; ^\/a^=±a.

Vi =±2; V^=±2.
'^'^=±a.
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Hence we may say that,

The even root of a quantity has the douUe sign ±.

When the root is odd, the sign of the power must always be the
same as that of the root ; thus,

^ax—ax—a=—a^', (_oj)5 — _«5. (_^)2''t+i __^2m+i

axaxaxa =+a^
; {-\-aY = +a^', ( + a)2'"+i = 4-^2'»+i

It follows, therefore, that,

An odd root always has the same sign as that of the quantity

itself.

Examples.

Extract the roots of the following, as indicated:

1. v^, V^y Via^, ^/^a^> VSa\ \^—8a^, v^^aH^,

Ans. ±a^, ±2^5, ±\a, ±3a^b,2a, —2a,ia^h,

/~XaFh^ 3/ T "

3. yea^, Y2abK^, y^SBa-'b-"', y ^,

Ans. ±6h'ic^(^, 2-a^^^c-, ±6a"^5"5, -j.

Ans. ^Za^h^, Za^h^, -^, (^\

5.vr,^,^,|/£,|/-S

Ans. ±1, —1, 1, ^, - -.

There is no such thing, so far as the human understanding can

reach, as the eve7i root of a negative quantity; for we cannot conceive

of a quantity which is not either + or — : but the product of any
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quantity, + or — , taken an even number of times as a factor, is +;
therefore, since an even root must enter the power an even num-
ber of times, we cannot conceive of such a negative power; thus,

V— «^ can be neither +a nor —a; for 4-«x -^a=-\-a^ and —ax
—a=-\-a^ : so that —a^ cannot be produced by the multiplication

of any thing whatever by itself. Such indicated roots are called

Imaginary. In general.

An imaginary quantity is tlie indicated even" root of a negative

quantity; thus,

V^ V^Z^, V^ ^/-aH^y and V-7a
are all imaginary.

38. The Division of Iilonomials.

Division and Miiltiplicatio7i are reciprocal operations. Any quan-

tity united to another by the sign x may be replaced by its recipro-

cal (unity divided by it) with the sign -^ ; thus, 5x2= 5-r-J^ or

a X J=a -^ T . Whatever has been said, therefore, of multiplication^

taken in the converse sense, will apply to division.

The signs x and -i- ahvays indicate operations uponfactors. The
sign X means to add as a factor; and — means to subtract as a fac-

tor, a^ xa shows that the quantity a^ \s to be further augmented

by the introduction of another a as a factor, giving a* ; while

a^-^ a shows that a factor a is to be withdrawn from a^, giving a^.

To divide one quantity by another, is to withdraw the divisor as a

factor from the dividend. Where a factor of tlie divisor, or tlie di-

visor itself, enters the dividend exactly, it may be t^en out at once;

thus,

loaH^cd -, , ^—-——— = o«6a.
^ab^c

Numerals are disposed of as in arithmetic, and where the same

letter is found in dividend and divisor, the difference of their expo-

nents gives the new exponent of that letter in the quotient.

Let it be remembered that like signs give + and unlike —

.

Examples.

1. Simplify ^^a^hc'^d-^ ^a'c. Ans. baled,

2. Simplify ^a'¥c'x^ -^ ^a^cx. Ans, ZaWcx.

c
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3. Simplify ;;^jy- . Ans» — dby.

4. Simplify 7-^. Ans. —a^bx""^.

5. Simplify - _J . A71S, oT "
'Z>«

-y " *.

39. The Zero Power of a Quantity.

In dividing one quantity by another it often happens that the ex-

case that letter disappears entirely ; thus, -rr = ^•

ponents of the same letter in the two quantities are the same, in which

ab'

b'

We may, however, leave the letter in the quotient by giving it the

ab^
exponent zero ; thus, —=ab°. Here, manifestly, b°= 1. The zero

simply shows that b is not a factor of the quotient at all. To com-

prehend how any quantity to the zero power must be equal to unity,

we have but to remember that unity enters every expression as a

factor, and that thus a°= 1 .a°.

Now, removing a, since the exponent ° shows that it is not a

factor, the co-efificient 1 remains.

Examples.

da^d 2oa"'bic, —x'ny'q — 1 — a
' a^b ' —Da"'b~ ' xiT' — 1 ' ~^ '

Ans, 36*2", — 5^ ^c, - xn yi , 1, — 1.

©v.)

Ans. 1, — 1, 1, \, — 1.

(5)"a:^/ {a-\-lY (a-bY{a + bY - [a+{a'by]
^'

{bYx-'y'' {a-\-bY (a-b)a ' - [ + (-!)] '

Ans, 5'"-"a;« y, (a+ b), —^^ —, —a—a^b^.

4. ^ = dr-^^a\ But -^ = 1 .-. a° = 1.
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40. Entire and Neg-ative Exponents.

When the exponent of a factor in the divisor is greater than the

exponent of the same letter in the dividend, the subtraction of the

greater from the less must give a negative exponent ; thus,

or

Now, in this case, a enters the numerator but twice as a factor,

so that when it becomes necessary to take out four such factors, we
shall have a deficiency of two. This fact the — sign shows : that

is to say, we must still withdraw the factor a twice.

This meaning of the negative exponent follows from the general

definition. A negative exponent, then, shows that not only is there

no factor such as that over which it is written in the quantity, but

that such quantity must still be diminished by that factor a certain

number of times.

1 a^
a~^ =-; for -^ = a^-^=a~\

But -Y= -r.a =-.

In general, let p and q be two quantities whose difference is m, q
being the greater ; then,

or

But — = — .•. a"^ = — . That is.

Any quantity raised to a negative povjer is equal to unity divided

by the quantity raised to the correspondiny positive power.

Again,

a' _ 1 __1 , ,^-^^-^' ^""^

a^ 1— = a .'. 05 = —^ ; or, in general, let p and q be two quantities
a a

whose difference is m, q being the greater.

a"^ 1 1 1 ^

«' 1— = a"" .-. «"* = —-. That is,
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Any quantity raised to a positive poiver is equal to unity divided

ly that quantity raised to a corresponding negative power.

It follows from the foregoing that,

Any factor may he transferred from the nufnerator to the denom-
inator ; or from the denominator to the numerator hy changing the

sign of its exponent.

Examples.

Convert the following expressions into fractional forms with unity

for numerators

:

4- — -
1. a, al, a^, a"^, anh^, bah^, 20x-^y^,11111 1 1

Ans, «-' «-*-' „-i' a-' „-lj.3' 5_,„-,j-^' 30-V

2. («+J)->, Q , a-'b-, X -f. -a, -{-a)-\

1 1 1 1 -1 :^_i
^"*-

(a + b)' TaY" ab-"' '-' a"" -a~ a

(-J

Convert the following into expressions containing no negative

exponents.

q « -1 ^ o-^xy~^ {a^iy^ (a-b){a-{-b)-'
'^' ^^ ' b-'c' 2-'ab-' {a-by {a-b)-\a + b)'

8 b^ 2xb'^ a-b {a-b)(a-b)
Ans.

a' a'"c' 3 i' a-^b' (a-\-b){a-i-by

Convert numerators into denominators, and the converse.

^ab-' a'^b"" ^a'cx~^ 9-'xy

2c^' ~W^ ' d"'(fl
' -1 '

2-'cd-' c-'d^ d-^c-'^ (~1)-^

'^-'--'^'
ah--\ira-^c-^x^' 9.-V'

Remark.—It must be carefully borne in mind that only factors can be thus

transferred. Thus, in the expression , the a or T) cannot be written in

the denominator. The a + h must be taken together, thus, ,, ^
.
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We could write, however,

-L+5 J-.+ l

c

1 1

a" c

a a

d d

41. Practiomal Exponents.- Radicals.

From the general definition of an exponent, it follows that a frac-

tional exponent must show how many times the quantity to which

it is afiixed is to be reckoned as a factor : that is to say, that the

quantity is to be resolved into as many equal factors as there are

units in the denominator of the exponent, and that as many of these

factors are to be taken, as there are units in the numerator ; thus

(9)*=(3x 3)^=3.

am=z(Js/a • VS** V^ ^ times)^= v^'

Now, the Root of a quantity is that factor of it which, taken a

certain number of times, will produce the quantity itself.

If there are but two equal factors, either of them is the square

root ; if there are three, any one of them is the cule root ; if there

are m equal factors, any one of them is the with root ; thus,

25=5x5 .-.5=^25; 27=3x3x3 /. 3=v^. In like man-

ner, if a contains h m times as a factor, 5=^a.

It follows therefore, that.

The denommator of a fractional exponent sliows the root to he ex-

tracted; thus,

a^=Va

^3—y^
i mr-

am z=zy a.
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It is thus manifest, that,

The radical sign is identical in signification with a fractional ex-

ponent, having unity for its numerator and the index of the radical

for its denominator. Any radical may, therefore, be removed by en-

closing the quantity in a parenthesis, and writing instead of it such

a fractional exponent.

There is thus no necessity for the use of the radical, and it is only

retained here because it is so universally found in mathematical

works.

Examples.

Transform the following into expressions with fractional expo-

nents:

1. VB, v^, V^, VaVb. Ans. 5^, c*, c?^, (a+ J)^

Bemark.—When the radical sign is removed from a polynomial, as in the

last example, the bar must be retained, thus, a + h'^, or replaced by a parenthesis,

thus, {a+ ty ; so, also, where any mistake might result, as in ^%, ox A/ -, the

parenthesis must be used ; thus, (|)^ and ( t ) •

y 5 -W ' y a-c-\a-c) '
^^_,f

i
= iC «.

6. >4/Va=(V«)^=(«^)^=«^, |/V«=(v^) "*=(««)•"=«^«

7. a4=v^, ah^^'Va^'^, aU^c' ^V^^y^O^,
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42. Fractional Exponents.—Radicals.

'Now, while the denominator of a fractional exponent shows

the degree of the root to be extracted, the numerator shows the

number of times such root is to be taken ; that is, it shows the power
to which this root is to be raised ; thus.

But, (v^)"'='V^, for we may write {^/a)"*=a^={^'^)^= ^/a'^;

hence, we can say in general, that

The numerator of a fractional exponent shows the poiver to which

the quantity affected by it is to be raised, while the denominator shotvs

the root to be extracted.

Examples.

Transform the following into equivalent expressions

:

1. VfJ", ai , an, a^ , an, «»»+».

Ans. a^, ^~a% i/ —,> V«™, v^^^ *"v^«.

Ans, {\/a^y= {any, a^anaf, \zy^\tjy^=xiyk

aVb 5a/^ Sa^b{cdy^ cd{25)i

cVd' 6Va^' 2«^~"' ' 4«^'

ab^ 6c^ 3a^b\/al 5cd

cd^ 6am
""'''

-}' .A' -^ '4«x-

a"
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43. To changre the Index of a BadicaL

It is obvious tliat we can multiply or divide the numerator and

denominator of a fractional exponent by the same thing, without

i.iic*i^5xxx^ . wo «x^x.x^^«vx^

—

,...«„,„, =a^, a*=a^, ap*=an. But the

numerator is the exponent of the power and the denominator is the

index of the root ; whence we may say, in general, that

We can multiply or divide the index of a radical hy any quantity,

provided that we, at the same tim^, multiply or divide the exponent of

the quantity under the radical sign.

For example, take \^a^ -{-h—c. If we should multiply the index

of the root by 2, we must raise a^ +1—0 to the second power; thus,

V«^+^— c = ^^(a^ +b—c)^. The quantity under the radical must
be considered as one quantity. We may, however, multiply or divide

the exponent of each factor under the sign; thus, "s/da^b =
V^a^, or ^36a*^>6=^6a2^,3.

Examples.

Change the indices of the following by multiplying by 2.

1. V^, Vo", Va;, V3^ ^^aH, y/'da'"b\

Ans, V^y 'V^, v^^ Vd^^, X/d^^, ^yW^.

Multiply by 3.

Multiply by m.

r - r b.
'^^'
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Divide by 2.

4. ^, ^4^, Veli^Fs j/^-

oxzy

44. To bring: Badicals to a common Index.

Eadical quantities with different indices may be changed into

equivalent radicals having the same indices. For let v^ and v^
be two such quantities. They may be written,

a"« and Z>».

Causing these fractional exponents to have a common denominator,

we have,
pn qm

a""* and ¥^

;

and thus, "^/oT and V^* We may, therefore, say that,

To hring radicals to a common index, find a common multiple of

the several indices, and take this for the common index; then dimde

this neiu index by each of the old ones in succession, and raise each

quantity under the radicals, respectively, to the power indicated ly

these quotients; or

Usefractional exponents and bring them to a common fractioiial

unit.

For example, take 4\/2a', ^'s/^b^ and a\/c^. The least common

multiple of the indices is 12. We may then write ^"s/ , iV ~,

aV ; now raising the quantities under the radicals, respectively, to

the powers found by dividing 12 by 2, by 3 and by 4, we have,

^'Vi^, t'vW^yr and aV(c^-y or

4:'\/M^\ i'v^Slds and a\^c^.

It will be observed that the quantities outside of the radicals re-

main unchanged.

Examples.

Transform the following radicals into equivalent ones having

common indices:
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1. |V5^, \^3/^, -Vc. Ans. 1^125^ \'W^, --v^.

2. a^/b, 5^3^ ^. Ans. aVW, 'f'W^, |/p-

1. S. §••* fi£. ?m^
4. cr, h^, Ans, or, b^. a"", bi. Ans. «?", Z*?*.

5. («+ Z'A (a-b)^, Ans. (a+ b)^, (a-b)^.

45. Product of the nth. Roots.

T7ie product of the nth roots of tivo quantities is equal to the "nth

root of the product of the quantities, and the converse.

For, ill
a»b'' = {ab)''; whence,

^a ' \/b = \^ab.

Again,

The quotient of the nth roots is eqtial to the nth root of the quo^

tient, and the converse,

For,
1 i

a^" /a\» ,

T~ \b)'
^'^®^^^®'

Vb

\/a _ ""/a

These principles enable us to combine radicals by multiplication

or division. Thus,

a^X c^/d=acVb • Vd=acVbd'y
hence,

To multiply radical quantities together, multiply the factors out-

side of the radical signs together, and also thefactors under the radi-

cal signs, retaining the radical over (he latter product.

For example.

ZaHV^cdr X %ah^ y/^-^aH x %ab^^/hcdF~xcd=^an'^^fhcNF^\
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The indices of radical expressions so combined must be the same

;

if not so already, they must be changed into corresponding radicals

with a common index.

Examples.

1. 3a\/b^x6bV7. An's. \Ul^/W.

% 3a(52)^ X 55(7)*". Ans. 15a&(7^>2)i

3. \Va X iv^ X -/(/- • Ans. -iVb.

4.K«)*xi#x-Q* Ans. ^m^'

5._vT.xtVi. ^^,.__|/_.

7. -V^x \^xjv^. ^W5.,-Vv^8192ai3.

8. 'V^ X —v^ X — '^. Ans. *"v^a^^V4Vp+^.

n m 1

:m X —an X — «7.9. a» X —a» X — Wi". -4?Z5. a^np+i^^mnp'

10. 2J / T X -^/l / ^. Ans, -2cA / ?^.

n.2g)*x-.^#. Ans

12. 6«\/^^x~25'V^2^. ^W5. -lOaSv^^^^IOSa;'.

13. 5a(-3a;)^x-2J(2a;2)i

46. Division of Radicals.

To show how to divide one radical expression by another, we have,

a\/b

cJ!yd

To divide one radical quantity ly another^ divide the quantities

^ a ^b a ,V^ ••— = - • ~— = -A/ -, ; whence,
'd ^a cy d'
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without the signs, and the quantities within, respectively, retaining

the radical sign over the latter quotient.

The indices must be made common, if not so already.

Examples.

1 /a 21/ 2a'

3y b

2.

(4)

2\2/ _3/5>^^
V2J •

2\2

1 /«\4
""

2

3V^/

{2a-')n _ /2V^-1

•

cV"6 ^y ^^' y^ y y ^^f y 4' ^^.

f2V^

3.T(2r?2p _3a;/2^oago\^ 8^2&(5^5g)n ^ ^ /5^^«^\
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47. Simplification of Kadicals.

Any factor may be removed from within a parenthesis and made a

factor without, by multiplying its exponent by the exponent of the

parenthesis; thus,

2a{b'c'"'d)i= 2ac^(m)h

2a(Wd)^= 2ah^&d-'.

Numerical factors may be treated in the same way ; thus,

2a(l2h'(^d)^=2a{2'xZ¥c'cd)^

=2 X 2abc{^cd)l

=4:ahc(dcc

The radical sign means that the root of the quantity under it is to

be extracted ; which may be done by extracting the root of the several

factors successively : whence it follows that we may extract the root

of any factor under the radical, and write the root so found as a

factor without ; thus,

2aV^"'d = 2aVbV"'c'"d,

= 2abo'^V^,

2a^/12U'&d = 2aV^ x db'o'cd,

= 4:abcV^cd,

This operation is called simplifying a radical. A radical is said

to have its simplest form when there is no factor under the radical

of as great a power as the degree of the radical. Practically,

To simplify a radical expression, looh out all the factors under the

radical sign which are exact powers of the degree of the root required,

or may be made so ; divide the exponents of such factors by the

index, and write the factoids, with their neiu exponents, toithout the

radical.

Or if the parenthesis is used instead of the radical sign.
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Multiply the exponent of the factor by the exponent of the paren-

thesis.

Examples.

1. 'ila{Wc)i = 2ax 2b{c) \ = 4.ah(c)k

2. 2aV^^= 2a x 2hVc = 4:ahVc.

6. 6x(x'{a+h))i =:5x\a+ b)^,

6. 6xVx'{a-hb) = 6xWan.

7. 3«(9a^^(« + hy)^ = 9ax\a+ b)yk

8. 7aVlQxy\a+ by = 2Say {a+ bfv x.

9. c{naW)^ = c{2 X 9^V5'^)2 = ^ab'c{2ab)^.

10. 1^48^' = |A/3xl6a'"a' = 2a'v/3«^.

11. [32a'(2 + ^)']*=[4x8«««(2+ J)^(2+5)]^=2a='(2 + J)[4a(2+5)]i

^324 _ 6 . /3

IW^^ay a'

13. vliK^^I^'^v^ VA^'=t«-'v^', |/K«*=iKl/?.

^ , / /21a^x^ Sax . /ax^ a 3 /r^^-

—

^j—. 55"' 5

15. vT=iA/3. ^^=1^1, iVS= iVi.

16. VW=A/W=V||iriO=f ^10.

17. v'^=v'S=V?r^r63=jV63.

18. V«=Va^=-|V|'.
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48. To pass a Factor under the Badical.

It is evident that we may pass a factor from without to within a

parenthesis, or the radical sign by the reverse process ; that is, by

dividing tlie exponent of the factor by the exponent of the paren-

thesis, in the one case; and by multiplying the exponent of the

factor by the index of the radical, in the other.

Examples.

1. a(a)^z=z(a^)^, 3a(6«)^=(54«3)^.

2. 2aVah=^^/aH, 3cV5a^d=Vl^5a^c^d.

3. 2a(a+ I)y=2{J(a-\-b)y, 8a^{a-d)^-{2a{a-b)y.

4. 5a^Vci + b=6Vci^{(i-^b), 6aVa—i=aV26{a—b),

b \d) - \b^ ' d) ' 2c\ c ) -\ 8c^ )
•

mm m m p ^ri P

9. an l/aJ Y^% «-+^"v^= ":^^(-+iX'»-i)+i.

10. b^-\by^i={b^'^-'^'+')^i, a'^''{a-')-={ar '''-')^.

49. To Transform tlie stun of two or more Radicals.

Radicals are said to be Like or Similar when they have the same

indices and the same quantities under the radical signs; thus,

aVb and ^Vb are like; {a + b)Vct"'b and Qa^VaTb are like; so also

are j/^*and5j/^^

The algebraic sum of two or more like radical expressions may
readily be transformed into a single term ; thus,

daVbc +aHVbc-2Vbc={da-aH-2)VTc.
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We have simply to take the algebraic sum of the quantities

without the radicals, and after this write the common radical.

If the quantities without are numerals entirely, they are actually

added or subtracted according to their signs ; thus,

^i/f-^i/f=yf-

Radicals which are not like as given, may sometimes be made so

;

thus,

aVb^c—iVbcd^ =ahVFc—idVbc

= (ab-bd)Vb^,

This operation of reducing radical expressions to a single term is

generally called addition or subtraction of radicals, as the case may be.

Examples.

2, Sa^xVsi^ + 4:a^xV^^ = 12a^xV^, Sa\/b- U^/l-

3. 5a{b)i-2a{b)i= da(b)^, 3(« + Z')*- {a + b)i= 2(« + J)i

6. 2aVb^c-3b\/l^^=2ahVyc-3hc\/Tc={2ah-3hc)\^

8. 9\/lQ^-10\^Ua!^=lS\/2cF^-30\/2a^^
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^a ^ ^ a ^ ^a^ ^a^ ^a^

11. vT+V7^=iV3+iV3==fA/a:

12, |/| +/j/5--i\/^+iV^=iVa.

60. General Principles of Exponents.

From the nature of exponents we have tlie following general re-

sults :

a""

{ary=ar*

m

Thus, we may say that,

I. The addition of ex2)onents takes place in the multiplication of

quantities.

II. The suhtraction of expo7ients takes place in the division of

quantities.

III. The multiplication of expone7its tahes place in the formation

ofpoivers.

IV. The division of exponents takes place in the extraction of
roots.
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SECTION V.

TRANSFORMATIONS OF POLYNOMIALS.

61. We have now pretty well disposed of the operations upon mo-
nomials or single terms ; let us proceed to investigate the transfonn-

ations which may he performed upon polynomials. If the prin-

ciples already established are carefully borne in mind, we shall find

little difficulty.

52. Multiplication of a Polynomial by a Monomial.

First, let a be the sum of all the positive terms in any polynomial,

and b be the sum of all the negative terms in the same ; the polyno-

mial itself will he a—i.

The product of this polynomial by any single term, as c, will be

(a—h)c.

Let us now convert this product into an algebraic sum. The prod-

uct of a and cis ac; but this is greater than the true value of tlie

given expression, (a—b)c, since b should have been taken from a be-

fore it was multiplied by c. If, then, we subtract be from ac, we
shall have the true product ; hence,

{a—b)c=ac—bc.

We should have obtained the same result by simply multiplying

each term of the polynomial by c, observing the law of signs, and

uniting the partial products by their respective signs.

If c had been negative we should have found the same principle

to apply.

We may say, then, in general, that.

To multiply a polynomial by a monomial, multiply each term of

the polynomial by the monomial, remembering that like sigtis give

plus, and wilike minus.

Examples.

1. 5a'(3aJ + 2c-l). Ans. lMb-\-lMc-ha\

2. Jai(2aV^ + J). Ans, ab-'+ia^.

3. ^^a{W^-Va). Ans. UV^a-da.
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. a/a /- , \ . a^ a ,- , a

6. Vc(4^c—20 + 2Vo). Ans. \^-20Vc-\-2c.

6. -25a'x\l-Sabar'-a^. Ans. -26a'x^ + 7oa^baf+ 26a^c'X''

7. 2a'{^^^^-^-3a-'}. Ans.
^^'"^^^'^-6.WM

Va/Va_Vc \^a\ a ^fac ^a'

We are said to factor an expression when we transform it so that

the several factors which enter it are made visible to the eye ; thus,

ab-{-ac—acl=a(b+c—cl). When we have an algebraic sum in which
a monomial and a polynomial factor enters, the operation oifactor-

ing is the reverse of that in the above examples.

Let the student be required to factor the answers given in the

above examples.

53. The Multiplication of Polynomials.

Resuming the polynomial, a—b, letc—^ be any other polynomial.

Their product will be

[a-b){c-dy

To transform this product into an algebraic sum, let us begin by
multiplying a— J by c\ we shall have

ac—bc.

This result is d times greater than the product of the two poly-

nomials, since d should have been subtracted from c before we used it

as a multiplier. If we, then, subtract from ac—bc the quantity d{a—b),

we shall have the true product of the polynomials ; that is

(a—b){c—d)—ac—bc—{ad—bd)=ac—bG—ad+bd,

It will be observed that we have simply multiplied each term of one

polynomial by every term of the other. !N"o mention was made of the

signs in deducing this result, so that by inspection we see again, that

like signs give plus, and unlike minus.

We may, then, say, that
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To multiply one polynomial hy another, multiply each term of the

one hy every term of the other, and simplify the result.

It is sometimes more convenient to set one polynomial under the

other, and write like terms under each other as the operation pro-

ceeds; thus,

«3- al-y-l^

a^+ ab-hl?^

a^—a^b + a^i^

aH—a^b^+ah^
aH^-ab^+h*'

«* +a^b^ +b^

Examples.

1. {da-UH-l){ha^c-\-b-x),
Ans. 15a^c—10a^b^c^—5a^c-\-dab—2b^c—b—'Sax+ 2b^cx+ x.

. (i«i-..|)(i-.-0

A71S. 7za^—b-{-rr—-aH-\-b^—-^-'^,
x> Z Zo 0^

3. (V«+ }V^~1)(a/«-JVT+J). Ans. a-ib + iVb-i,

. 5a* 5rt2 5^2 c* 2^ 1 , ^ . 27.4 , 1 -I 1
b 4:b^ b^

5. (^ _i) (•!-£+*). Ans. J-^ + ^±±^-1.
\ c J\ c / c^ c

6. (a + b){a-b). Ans.a^-b^,

7. {a + b){a+ b). A7is. a^+2ah + b^.

8. (a—b)(a-b). Ans. a^—2ai + b^.

c {ci c\/a c\ . a^ c^

' Wb VdAvi Vd/
^^^'

^ ^bd ^
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^^'[^-rb^^y^^b-^^^b)-
^^^'-

(^T^2 + (^^^^ +
^•

14. {—p+VqTp^){—p—Vq-i-2^^)' Ans. —q.

54. Two Terms unchanged by Simplifying:.

A polynomial is said to be arranged with respect to the descend-

ing powers of a particular letter, when the first term contains that

letter with its highest exponent, and the next contains it with its

next highest exponent, and so on. It is arranged according to the

ascending powers of the letter when the order of terms is reversed.

Now, when two polynomials are multiplied together, there are

always two terms in the result whicli cannot disappear in the pro-

cess of simplification. These are, first, the term which results from

combining the two terms with the highest exponents of a particular

letter ; and, second, the term which results from combining the two

terms with lowest exponents of the same letter ; thus,

x^-5xA + 7x^-2x^.

In this case, x'^ and —2x^ come immediately from the combina-

tion of certain terms; while the others are the results of simplifying.

55. The Division of Polsmomials.

Tiic dividend must always be produced by multiplying the quotient

by the divisor ; and when these are polynomials, we know, from the

last article, that there must always be two terms at least in the divi-

dend which will undergo no change from the process of simplifica-

tion.

Let us take the polynomial x^^hx^ i-7x^—2x^, and let the divisor

x^—2x be given to find the quotient.

Now since x'^ must have resulted from the multiplication of x^ in

the divisor by that term in the quotient which contains the highest

power of ic, we can tell at once, by dividing x^ by x^, what that term

must have been. One term of the quotient must then be x^.
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Let lis for convenience arrange both polynomials, and write the

dividend first and the divisor after it ; thus,

X6 _5a;4 ^ 7^3 _2X^ X^ —2x
x^-2x^ x^—3x^+x

-3a;*+7a;3-2a:2 .

—3x^-}-ex^

x^-2x^
x^-2x^

writing the first term of the quotient under the divisor. Now, as

this term of the quotient must be multiplied into every term of the

divisor, in the process of forming the dividend by multiplying the

divisor and quotient together, if we perform this multiplication and
subtract the result from the dividend, we shall free it from all partial

products in which this term, x^, of the quotient enters. Multiplying

and subtracting, as shown above, we have a remainder, —3x^ + 7x^

-2x^.

Now, the term —3x^ of the remainder must have resulted from

multiplying x^ by that term of the quotient which has the next

highest power of x in it. We may thus find another term of the

quotient by dividing the first term of the remainder by the first term

of the divisor; thus we have, —dx^. "Writing this after the term of

the quotient already found, and multiplying the divisor by it, as be-

fore, and subtracting the result from the remainder, we have a second

remainder, x^—2x^. By continuing this process, we shall find all

the terms of the quotient. If there should prove to be a final re-

mainder, the division cannot be exactly performed. In this case, we
may write the remainder in the form of a fraction, having the divisor

for the denominator, and unite it with the quotient by its proper

sign.

We may then say, practically, that

To divide one polynomial hy another, arranye the dividend and
divisor according to the poivers of the same letter; divide the first

term of the dividend hy the first term of the divisor. This will le the

first- term of the quotient.

Multiply the divisor by this term of the quotient and subtract the

resultfrom the dividend.

Divide the first term of the remainder (arranged) hy the first term

of the divisor ; multiply as before, and subtractfrom the remaindei-.
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Continue the operation until there is no remainder, or until the first

term of the 7'emaincler luill not contain the first term of the divisor.

Examples.

1. («2+2^5 + J2)-i-(«4-&). Ans. a+h.

2. (a2—2a5+ 52)-^(a— J). Ans, a—h,

3. {a'^—l^)-^{a-\-l\ Ans, a—l,

4. (4a3+4«2_29a+ 21)~(2fit~3). Ans, 2a8+5a-7.

5. (a4-54)-^(«-J). Ans, a^+a^h^-ab^-^h^,

6. {x^ •\-y^)-T-{x+y), Ans, x^—x^y-\-x^y^ — xy^-\-y^,

7. {x^+ij^)-^{x^-^y^). . Ans, x^—x^y^+y^,

a^ — h^
8. r-. Ans, a^+a^b + a^h^+ah^+h^,

a—

9.
—"^. Ans. a"'-^+«"'-'^'4-«'""^Z''+ • • • ir-^a—b

12z/^-192

3^-6

11. l-v-(l— «). Ans. l-i-a+a^+a^-ha^ +

^^-
3^_(. ' ^^5. 4?/3+8?/2+16?/ + 32.

1-a

I'S' 57= i^7= . Ans. v« +2va + 4.

V«4-2Va

15. £!±^%l!. ^,,. „i+ ,i

16. :^^. ^«,. ^+^.
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66. Formulas used in Transformations.

A Formula is any general truth expressed by means of symbols.

The transformation of polynomials can often be m.uch shortened

by the use of certain simple formulas. We shall now give a few of

these.

{a + by=:{a + i){a+ b)=a^'\-2ah-\-h^ ; that is,

The square of the sum of huo quantities is equal to the square of
the first, phis tiuice the product of the first and second, plus the square

of the second j and the converse.

{a-l>y= (a-h){a-h)=a^-2ah+ h^ ; that is,

TJie square of the difference of tiuo quantities is equal to the square

of the first, minus twice the product of the first atid second, plus the

square of the second ; and the converse,

{a + b){a-i)=a^-h^, .-.

TJie product of the sum and difference of two quantities is equal to

the difference of their squares, and the converse.

When the second member of an equation is the algebraic sum re-

sulting from operations indicated in the first, such sum is called the

development of the first member ; thus, in

the second member is the development of the first

Examples.

Develop the following expressions, by the aid of the foregoing

formulas.

1. {x + yy. Ans. x^-\-2xy + y^.

3. {a-iy. Ans. a^—2a + \,

4. (i— a)2. Ans. i—a-^a^.

5. (ia+ i5)8. Ans. -Ja+irtJ+iJs.

6. I
-— —1 1. Ans. T ^+ 1»

^/b J ^ ^h
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7. I
-^^ ^——a^ I . Ans. 7

^^ r- + a

S. (p-VqTp'^y. Ans. p^-2pVq+p^ + (q+p^)

9. {l-a-'y. Ans. l—2a-' + a-'

10. {x+ y){x-'y). Ans. x^—y^

11. {la~h){la+ h). Ans. ^a^-b^.

12. (3a-ib){3a+ih). Ans. 9^8 -JS^

-(fH-i)(M). ^-s-r
14. (v^+ Z'jCv^-^). ^^^5. a-i^

15. (1-«)(1 + ^). ^^is. l-as

16. {l-ia){l+ia). ' Ans. l-^a^

17. («'^"»+^»^'") («''"— 5^'"). ^^5. a^""—!)^"".

18. (a^«-a/^)(v^ + v'^). ^??5. V^^-a/^,

57. Formulas ixsed in Transformations— Coneinwed.

By developing the following, we have

{a^-i){a + c)=a^ + {l) + c)a+ lc

\a—h){a—c)=a'^-'\i+ c)a + hc.

Whence we see that when two binomials are to be multiplied to-

gether, having their first terms the same and the second terms differ-

ent, with the same middle signs, we may write out the result at oncer

1. The first term of the result must be the square of the common
term;

2. The second term must be the numerical sum of the two last

terms into the first term with the sign of the last terms; and

3. The last term must be the product of the last terms with the

plus sign.

Examples.

1. ((55 + 2)(« + 3)=a2+5fl^ + 6.

2. (a;-5)(a;-4)=:a;2-92; + 20.

3. (H-a)(l+ J)=l + (rt + 5)+«5.
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6. (3a-i)(3a-i)=9a2-fa+J.

^Vb ^^Vb ^ b Vb

8. (a-'-l)(a-'-5)=a.-'-Ca-'+ 5.

58. Formulas used in Transformations— ConWnMcd,

Now let the last terms be different with different signs ; thus,

{a + b)(a—c)=a^ + (b—c)a—ic.

Whence we see that in this case the middle term will be the differ-

ence of the last terms into the common term, and the last term will

have the — sign.

Examples.

2. {ai-d){ai+ 3)=a-eai-27,

5. ('\/i-5)(^+ 7)='V^2^.2^^_35.

6. (a-' + 9)(a-^-ll)=«-2-2a-^-99.

7. {a''-4:){a'^-hl2)=a'"'+ Sa"'-iS,

8. {x^-9){xn^2)=x^—7xn^lS.

9. (ai-l){ai h25)=aii-2^ai-26.

69. Factoring:.

By the aid of the simple formulas already explained, we may often

resolve trinomials into their factors by mere inspection. Let us first

take some examples under the three following formulas:

a^-{-2ab+ b^=^{a-\-b){a+ b).
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a^-2db-{-b^ = {a-'b){a-'b).

a^--b^= (a + b){a-d).

Examples.

1. aH^-'C^= {ah+ c){ab-c).

2. 4:a^-4:a + l= {2a-l)(2a-l).

5. a—b={Va-\- Vb){\/a—Vl,

6. 4:a^-i={2a-i){2a+i).

7. 26aH^ +20ah^c-h4:c^ = {5ab^ +2c){5ah^ +2c).

25a-g x_/5a-^ Vx\fDa-'^ Vx\

9. fti-ji=(rti-+ Z*8)(ai-Z»i).

10. VS-i=(^/^+})('^-4).

60. Factoring— Conh'nwcd.

. Let US now show the operation of factoring under the formulas,

(a-\-h)(a + c)=a^ + {h-\-c)a+ hc,

(a—i){a-c)=a^ — (b+c)a + hci

For example, take

If there are any binomial factors in this expression, the product of their first

terms must produce a^, and, since a enters the middle term, they must both be

a : since the last term is positive the last terms must have like signs. Looking

at the middle term we see that they must be + ; we may then write so much of

the required factors ; thus.

Now we must have two such quantities for the second terms, that when mul-

tiplied together they will produce 6, the last term of the trinomial, and when
added will give 5. These terms, then, can only be +2 and +3, and hence the

factors are a+ 3 and a + 3, and we have
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Again, take

Here the middle term being — , the last terms of the factors must be — also
;

thus,

a^-5a+Q={a-2){a-d).

When the last sign in the trinomial is — , thus ;

a^+2a-8,

the last terms must be unlike to give a — quantity, and the + must be the

greater to give +2 in the middle term. Those terms must thus be, +4 and
—2, and we have,

a^+2a-S={a-\-4:){a—2).

Examples.

1. x^ +dx+2={x+2){x+ l).

2. :?;2 + i7:^4.72=(a;4-8)(a; + 9).

3. x^-12x+ do= {x-'7)(x-5).

4.. x^-\-24:X-2D={x+ 2b){x-l),

5. x^-ix+ i= {x-i){x-i),

6. a^x^-Uax-76= {ax-hl){ax-7o).

7. da^ +12a-o= (3a-l){3a-i-5).

a _-i0-+2o=:(^-5)(^-5).

9.

10. \/S-3v^+2=(\/^-l)(v^-2).

11. «-'""+ 5«-'" + 6= («-"» + 3)(a-'"+ 2).

12. 25a;2-60a: + 35= (5a;-7)(5:z;-5).

Remark.—When there is a monomial factor present, remove it first and then

factor.

13. a^x^-12a^x+ 3oa^=a^{x-7){x-b),

14. 5«2+i5rt + 10=5(« + l)(a + 2).

15. 2x^y^-^-^ + ^|'=2y2(.r-J)(a.~i).

16. a^Vl-3a\/b->r2Vb=Vb{a-\){a-2).
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61. The Division of the Difference of like Powers.

The dijferGnce of the like j^owers of any hvo quantities is always

divisible by the difference of the quantities themselves.

For, let a and b be any two quantities, and m be any positive whole

number. The difference of the like powers will be a""— Z>"*.

Beginning the division, we have,

^m_Jm \a— b

a'''~^b—b"\ or

hia^'-'-b'^-').

Now, if this remainder is exactly divisible by «— J, then, a'^—b"' is

itself exactly divisible by it. But the remainder is b times a'"~'^—

b'"~\ so that if the factor a""^— Z**""^ is exactly divisible by a^b, the

entire remainder is divisible by this difference, and hence the divi-

dend a^'—b"' is likewise so divisible. We see, thus, that if a'^-'^— b""^

is divisible by a—b, a"'—b"' is slIso divisible by the same quantity;

that is to say.

If the difference of the like poivers of tivo quantities is exactly di-

visible by the difference of the quantities themselves, then, the differ-

ence of such poivers greater by unity, is also exactly divisible by the

difference of the quantities.

But we know that a^—b^ is exactly divisible by a—b\ hence,

from the hypothetical proposition just established, a^—b^ must like-

wise be so divisible, and hence a^—b^ must be, and so on to in-

finity ; which was to be proved.

This method of proof is called Mathematical Induction,

The form of the quotient will be,

^m J^m

a—b

62. The Division of like Powers.

The following propositions may also be readily demonstrated:

1. The difference of the like even po2ue7's of two quantities, is alivays

divisible by the sum of the quantities. The form of the quotient

will be,

~=a"''-'-a''^'b + a"^-'b+ .... -¥"'-',
a + o

a^ — b^

a-\-b
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2. The sum of the lihe odd powers of two quantities is always di-

visible hy the sum of the quantities themselves. The form of the

quotient will be,

a + b

a^ + b^

a+ b
=a^—a^b+a^b^—ab^+b*.

Examples.

Write out the developments of the quotients indicated.

1. ^^z=zx-\-y, '-^^x^+xy+ y^.
x—y ^ x—y ^ ^

x+y ^ ^ ' x+y J J J

2ab—c

« + 2

5. Factor ^6-^6, ^-\, \-x^, 8a3_27.

-b^
6. «5j_9^3^ 12a;* -192,

^8-Z>8 _ (a4_^4)(^4+ ^4)_ (^^2 4.^2)(^2_^,2)(^4.|,^4)_
•«2 + 2a6 + ^2- (a-\-b){a-\-b) " (a+ b){a+ b)

~

{it+ b){a + b)

63. The Binomial Formtila.

The process of raising a binomial to any power may be greatly

shortened by using what is called the Binomial Formula. By actual

multiplication we have the following developments:

1st Power {a+ b) =a + b

2d " (a+ by'=a^+2ab + b^

3d « {a+ by=a^+3aH+ dab^ +b^
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4tli Power {a+ hy=a^+4:a^I) + Qa^b^-\-4:ai^+b^

5th " {a+ by=a^ +5a^b + 10aH^ +10aH^ +6al}^+ifi.

Examining any one of these developments, as the last, we see that

a (called the leading letter) appears in the first term with an expo-

nent equal to the exponent of the power of the binomial in that case,

and that this exponent goes on diminishing by unity to,the last term,

in which it enters to the zero power, that is, not at all; thus,

a^ a* a^ a^ a^ a°.

With b the order is just reversed ; thus,

b° b^ b^ b^ 5* bK

It will be observed, further, that any numerical co-efficient may be

found from the preceding term by multiplying the co-efficient of

that term by the exponent of a, the leading letter in that term, and

dividing this product by the number of terms preceding the re-

quired term; thus, to find the co-efficient of the fourth term, in the

development of the fifth power above, multiply 10, the co*efficient of

the third term, by 3, the exponent of a in tliat term, and divide the

product 30 by 3, the number of terms preceding the fourth, and we
have 10, the co-efficient required. In like manner, the co-efficient

of any other term may be found, remembering that the co-efficient

of the first term is always unity. Generalizing, we may write,

I'/d

m(m—l)(772—2) „ ,-,~"^

—

1^ ^^ ^ -^ +^ •

This is 77ie Binomial Formula, and it may be rigidly demon-

strated to be true, whether 771 be entire or fractional, positive or

negative. When m is fractional or negative, the number of terms

will be infinite.

The power of any binomial may be developed by means of this for-

mula. For example, let us take,

(3x^-2ab^y.

Let dx^—a and —2ab^=b.
We have at once,

{a + by=a^ +4:a^b-\-(jaH^ +4:ab^ +b^.
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Now in this, writing for a and h their values as above, we have,

(3a;2--2«Z'2)4=:(3^2)4 4.4(3^2j3(_2a^2) + 6(3:c2)2(_2a^,2)8 +4(3^2)

(3a;2-2«J2)*=81a;8-216a;6«52+216a;%2Z>*-96a;2a3^6 + 16^4^8.

Examples.

1. Develop («8+ 1)3, {ah^-2)^,
^^'df'

2. Develop(2/-l)', (Va-l)', (V^+V^)*.

3. Develop (« + ^»)^, (a + &)^=«i + i«*"'Z'-i«*~'Z'2 4.etc.

4. Develop (a + ^j-^ (« + ^)-*=«-'-a-'6+a-'Z'3_etc.

5. Develop (a^-lY, (^"'+^*)^ (^-?/)^.

6. Develop (2-3^^ (^-^)^ (v^_V^)^

r. Develop {1-a)^, (a+ l)-\ (a + hy.

64. The Powers of Polsmomials.

The power of any polynomial may be developed by the use of the

binomial formula. For example, let it be required to find the third

power of 2a3—4fl5j+ 3c8.

Let 2a2_4^j=:^ and 3c3=J; then

Replacing the values of a and h, we have

(2a2_4«J + 36"2)3=(2a2-4a^>)3 4-3(2a8-4a5)2(3c8) + 3(2a2-4«J)

Examples.

1. Develop (« + 5 + c)3.

2. Develop (l-^2x-Zx^y,

3. Develop (a"* + J'*)3.

4. Develop («« + 1 + a-^) 2

.

5. Develop (\/a + l-V^)*.
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65. Common Multiple.

The Common Multljple, or a Common Dividend of two or more

quantities, is any quantity which is exactly divisible by each of

them: such a dividend may always be found by multiplying the sev-

eral quantities together ; thus, 4ta^, Sab and 3b^c would give 36^3^3^

for a Common Dividend.

The Least Common Multiple is the least quantity which is so di-

visible; thus, 12a^b^c, is the least Common Multiple, or Dividend,

of the quantities above given.

A common multiple must obviously contain every factor which

enters any of the quantities by which it is to be divisible, as many
times as such factor enters any one of the quantities ; hence, if all

the factors are made to appear, we have but to take each factor the

greatest number of times it enters any one of the quantities, and
multiply the results together ; thus, a^ +2ab + b^f a^—b^ and a^—
2ab + b^, resolved into their simplest factors give,

(«+ Z»)(«+ J), {a + b)(a—b), (a-b)[a—b).

Here {a + b) enters tlie first expression twice, and {a—b) enters the

third twice : the second expression containing no other factors than

these, we have,

{a-\-by{a-bY=2a^-\-UK

It is commonly better, however, to retain the indicated product as

in the first member of this equation, than to develop it as in the

second member. Thus, we may say that.

To find the Least Co7nmon Multiple of two or more quantities^ re-

solve the quantities into their simple factors, and take each factor the

greatest number of times it is found in a7iy one of the expressions,

Tlie product of these factors will be the fnultiple required.

Examples.

Find the Least Common Multiple of the following

:

1. a^—b^,ab-hb^,a^-ab,{a-^by,{a-{-b){a—b),b{a-{-b), a{a-b),

{a-\-by. Ans. ab{a-Yb)^ (a—b).

2. x^-i-x-2, rz;2 +2:^—3. Ajis. {x—1)(x+ 2){x-{-3).

3. (a;2-«)2, x^-a, 5. .
Aiis. 5{x^-a)K

4. x^+dx-\-20, x^+dx—A, x^-h4:X—o.

Ans. {x+ 4:){x+ i)){x—l).
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5. Grt2_23« + 7, 0a^-2oa + U. Ans. (2a-7)(3a--l)(3«-2).

6. 3a, (,a-\-lY, a^—2ah-{-l^. Ans, da{a-\-bY{a—hY.

66. Operations upon Algrebraic Fractions.

The student is supposed to be already fiimiliar with the manage-

ment of fractions in arithmetic. Their treatment in algebra is al-

together the same. The transformation, however, of the sum or

difference of two fractions into a single expression, requires some

care, and we shall now give a number of examples for practice.

Let the student remember to first convert the fractions into equiv-

alent fractions with a common fractional unit, and then to add or

subtract the numerators, placing the result over the common denom-

inator.

Examples.

1 1 _ a—h a + h a—h + a + h 2a
-'-•

. 7 > ' 7 O 7 O ' O
a+ b a-b a^-b^ a^-b^ a^-b^ a^—b^'

^ _1 2 ^ x+ 2 2(x-\-l) jc+ 2-(2(x+ l))^
' x+ 1 x+ 2 {x-hl){x+ 2) (x-{-l){x-\-2) {x+l){x-\-2)

—X

{x + l){x + 2)
'

1—a l-\-a _ {l—a)(a + b)— (l + a)(a—b)_
' a^-b^ (a-\-b)^~ {a^b){a-\-by

""

a + b—a^—ab—a-[-b—n^+ab_ 2b—2a^

(a-b){a-\-b)^ ~{a-b){a + lj)'^

'

l-a_l+a 1 _ {l-a){l-a^)-{l+a){l+a)^+l- a
' 1 + a l-a'^(l + a)^~ (l + a)(l+«)(l-«)

1—5«—4a2

^ a 2b , b . a+ b

a+b a—b a+b a—b

_ «+ 3
,
2a-b ^ 3«2 + i9r?._25

D. —z—1

—

-—

.

Ans, —
5 3a loa

7 <^+ ^ ^—^f
J

^ab_
'• a-b a +y ^"^'-

a^~^b^
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r^ o ^ I x—a\ . ^ .
cx-^hx—ah

8. Zx-\----\x j. Ans, 2x+-

1 a"'—!)'^

12. i!_+^. ^,i5

be

2a"' -2b'^
^2«^b'-

•

^7^5.
2hi

a-y

A7iS.
a-\-h

a—b'

a' + b'

67. Essential Sigm.

The sign by which one expression is connected with another is

called the Sig7i of Operation ; the sign resulting from the combina-

tion of this sign with the sign of the quantity itself is called the

Esse7itial Sign of the expression : thus, in the expression

a-{-b),

the second term is to be subtracted from the first, and the sign of

operation is — ; but renioving the parenthesis the two — signs com-

bine and give +b. This resulting sign is the essential sign of the

term.

AYe sometimes cannot tell the essential sign of an expression abso-

lutely ; thus, in

_ a

~b—c^

the essential sign of the fraction, and so the sign of x, will depend

upon the relative values of b and c. If 5>c it is + ; if b<c it is —

.

Examples.

1. What is the essential sign of a; in i?; = — -—, when a is nega-— c

tive and 5>c? when 5<c?

2. What is the essential sign of x in x= j, when a>h and

cKd*^ when a<b and c<d? when a<b and c>d? when a>b and

Od?
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68. Imaginary Quantities.

We have seen that the even root of a negative quantity is imagi-

nary. Let us now take an imaginary quantity of the second decree,

as V —cLf and multiply it by itself, applying the general law of signs

;

we shall have,

But the square of the square root of a quantity is, from the defi-

nition, the quantity itself : so that.

We should thus have —a=±a, or, taking the upper sign, —«=
+ «, which is impossible.

To avoid this difficulty we must modify the law of signs in the

multiplication of imaginary expressions.

Now, every imaginary expression of the second degree may be put

under the form of,

aV-i'

in which a represents any real quantity, whether its exact value may

be found or not ; and V— 1? an imaginary quantity, which is called

the imaginary factor.

For example, let us have,

^/—ai.

This may be written,

^—ah^'s/abx {—l)=:^/ah . ^/^l.

Again,

Let us now multiply V— 1 by itself any number of times, until

we discover the law of such combinations.

Since the square of the square root is the quantity itself.

The third power will be found by multiplying the second by the

first; hence,

In like manner,

w^y=w~^yw~iy=(-i){-\)=+i.
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We may in the same way continue the operation, and, for the sev-

eral powers of V— Ij we shall have,

(V=i)*= a/^.

(V^i)'- -1.

(v^r=(v~i)^(v^ir=(-i)(-i)= +1.

(V^i)»={V^)^(a/^)*= (-!)( + !)= -1.

(V—i)^=(v^r(^=i)*=(+i)(+i)= +1.

It will be observed that the last four results are but a repetition

of the preceding four, and so they would continue to repeat them-

selves in sets of fours.

The multiplication of imaginaiy quantities is effected by the use

of this imaginary factor ; that is, we first resolve each expression

into two factors, one real and the other the imaginary factor, V— 1

;

we then combine the real factors by the ordinary laws, and the

imaginary factors according to the laws just deduced for the forma-

tion of its several powers.

If, however, only one of the quantities is imaginary, the ordinary

rules apply.

Examples.

1. Multiply 5a/^ by 2V^A,

5VlV^x2\/W^
10V'irix4V^"I

40(V^)' = -40. Ans,

2. Multiply a^J—h by cV —d,

aWhd'iV'^iy

—ac^hd, Ans,

3. Multiply (fl5 + J)\/-(«+ ^) by (a-\-l)^/—{a^l),
Ans. — («+ 5)3.
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8. 3V5x5\/^=loV'^^^.

10. V^^ V^^V^^ V^2V-/^=«Jc^.

11. (a/^+a/^)(V^^^-V^4)=-4.

13. (a/^-V^)(v^-V^)=V^9 +V^.
The division of imaginary quantities of the second degree is man-

aged ill a corresponding way, being careful to introduce the im-

aginary factor 'v/^.

Examples.

1. Divide 10a/^ by 5V^. Ans. 2.

2. Divide a\/—b, by cV—d. Ans. ——.
cyd

3. Divide W-aH^, by 2^=^. A7is. 2a.

4. Divide 9^—10 by 3^^. ^^^*^ 3^5.

5. Divide a^^j by«—V— ^. -^^^5. rt +V— 5.

Imaginary expressions of a higher degree than the second, may
be treated in a corresponding manner.

SECTION YI.

THE ROOTS OF NUMBERS.

69. The extraction of the roots of numbers properly belongs to

Arithmetic ; but it may be well to show here the rationale of the

process.

Since the square root of 100 is 10, we know that the square root

of any number which contains but two digits, must be expressed by



THE ROOTS OF NUMBERS. 71

a single figure. We can readily find the root of such, a number by

trial, when it is a perfect power.

When the number contains three or more figures, there will be at

least two figures in its root ; that is, the root will contain a certain

number of te7is and a certain number of U7iits.

Then, let n be any number, and a the number of tens, and Z> the

number of units in its root. The square root oin will-be (a + Z>), and

we may write,

n={a-vlY = a^ +2ao^-'b^ .... (1).

We see from this that the number contains «2 ^ that is, the square

of the tens, and 2a^, that is, twice the product of the tens and units ;

and Z>2, the square of the ujiits.

Let it now be required to find the square root of 1444. We shall

begin by finding the number of tens in the root;

and since the square of a single ten gives units 1444|38

followed by two O's; thus, (10)2= 100, the square _9 I

of any number of tens can give only O's in the last _G0J544

two places. We may then place a point over the 480

third figure from the right, as here seen, to show 04

that the last two places, 44, may be regarded as oc- _64= (S)^

cupied by O's, in our search for the tens of tlie

root.

Now, since the square of the tens of the root must be found ex-

clusively in 14, the square root of the greatest perfect power in 14,

which is 9, will be the tens of the root. 3, then, is the first figure of

the root, and 30 will correspond to a in formula (1). Write the 3 to

the right, as shown. Now, squaring it, subtract the result from 14,

and bring down the 44. We have really subtracted (30)3=900, and

the remainder is what is left after taking away a^ from the formula.

It must then correspond to the 2ab-\-b^of the formula. We should

be able to find i at once from this remainder, if it were 2ah alone, by

dividing by 2a, (2 x 30), a being now known. But, at any rate, since

b^ is quite small compared with 2ab, we shall not come far from b l)y

dividing the remainder, as it stands, by 2a. Then, doubling 30, and

dividing the remainder by the result, we get 9. Now, multiplying GO

by 9 (giving 2ab), and subtracting the result from the remainder, we

shall have 4 left. But this second remainder must be equal to the

square of the units, b^ ; in this case (9)^= 81. If our original number,

then, is a perfect power, 9 is too great.
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Trying 8 we find 64 for a remainder, and this is just equal to (S)* :

38, then, is the root required.

To shorten the last part of the operation we may double the 3, and

divide the remainder, exclusive of the last figure, by it

;

1444|38

then write the result in the unit's place, after 6. Now, ^

681544
when we multiply 68 by 8, we form at once (2a{bp —^^l

=2ab+ b^,
~0

When the number requires more than two places in the root, we
might apply the same reasoning to the discovery of the two figures

of the root of the highest denomination, and then, regarding all

these as forming one denomination, proceed as before. This is ac-

complished by simply pointing off from the right, . . .

in places of two figures each, and continuing the 15129[123

operation as above. If we had two more places of 1__

figures in the above example, we should bring them 22J51
down, and then double 38, and divide the remain- 44

der, exchisive of the right hand figures, by the re-
243J

729

suit, writing it in the root, and also in the new trial 729

division, and so proceed as before.

70. Extraction of tlie nth. Root of Numbers.

Let it be required to find any root of a number, JV". The root will

consist of a tens and b units. Thus we shall have,

J^=z {a + by =a''+ nO'-'^b + , etc.

Now the oii\\ power of the tens must have O's in the last n places,

so that in looking for the tens of the root we may point off the last

n places of the number. We may now find the tens of the r jot by

finding the highest perfect root in the left hand period. Subtracting

the nth. power of the tens so found from the number, we shall have

?ia'-'^ + ,etc., left. Now, by forming n times the ?j—1 power of

the tens, and dividing the remainder from it, we shall have the units

of the root, or something too great. By raising the trial root so

found to the nth. power, we shall find whether it produces the num-
ber or not. If too great, the figure in the unit's place must be

diminished.

We shall now give an example in cube root. Any other root may
be found in like manner.
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Let us find the cube root of 12977875.

It will be observed 12977875 1235

8
that only the first fig- 3x22=12149

ure of the second period 12977 =lst two periods.

(23)3=12167
is brought down for ^ 3 x (23)^^158718108

first remainder. This 12977875=The three periods.

(235)3=12977875
IS because 12, the first q

divisor, is really 1200, so that the remaining two figures would be

cut off in dividing, if brought down.

Examples.

1. Find the square root of 65121:9. A)is. 807.

2. Find the cube root of 12167. Ans, 23.

3. Find the cube root of 421875. A71S, 75.

4. Find the square root of 1058841. Ans. 1029.

5. Find the cube root of 354894912. Ans. 708.

6. Find the fifth root of 248832. Ans. 12.

Remark. —Let it be remembered tliat A/ ya = ^a, and that, therefore,

when the index is a multiple of two or more factors, we may find the roots in-

dicated by those factors, successively, instead of extracting the entire root at

once.

7. Find the sixth root of 244140625. A71S. 25.

8. Find the eighth root of 214358881. Ans. 11.

Remark.—If the number is partly or altogether decimal, begin to point off

from the decimal point going to the left for the entire part and to the right for

the decimal. Any number of O's may be added to the decimal and the opera-

tion thus continued to any degree of approximation.

9. Find the square root of 657.4096. Aiis. 25.64.

10. Find the square root of .140625. Ans. .375.

Remark.—A common fraction may be converted into a decimal and the root

extracted to any desired degree of accuracy.

11. Find the square root of 4^. Ans. 2.3604.
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12. Find the square root of
-J

to five places of decimals.

A71S. .57735.

13. Find the square root of 7, to four places of decimals.

Ans. 2.6457.

71. No Exact Root of an Imperfect Power.

The V5, or V7? or the root of any imperfect power of the degree

indicated, cannot be found exactly, either in entire or fractional quan-

tities; but we may approximate such a root as nearly as we please:

for example, ^7= 2.645 75131+ and so on indefinitely.

Such quantities are said to be iiicommeasuraUe, and are commonly

called surds.

The distinction between an imaginary quantity and a surd is, that

we may obtain the root of a surd as nearly as we please without being

able to find it exactly, while we cannot make the first movement

towards finding the root of an imaginary expression.

Let us now prove that we cannot find the exact root of a surd.

Letp be any whole number whose Tith root is ? > a fraction having

no common factor in the numerator and denominator, t cannot, then,

be reduced to an entire quantity. We shall have.

Raising both numbers to the ni\\ power, since they must still be

equal, we shall have

Now, in raising any number to a power, we but repeat the factors

composing it, a certain number of times, introducing no new ones,

so that t?" and b'^ are s,ti\\ prime with respect to each other ; that is,

they have no common factor, and thus, j^ is an irreducible fraction
;

so that we have p, a whole number, equal to an irreducible fraction,

which is impossible. Then, since ^p cannot be a whole number

nor a fraction, it cannot be found exactly at all.
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SECTION VII.

EQUATIONS.

72. An Equation is the indicated equality of two algebraic ex-

pressions; thus,

is an equation.

The sign = divides the equation into two parts, called Menibers :

the part written first being the First Member, and that following

the sign of equality, the Second Member,

73. The essence of an equation (its life, so to speak) lies in the

equality of its members. Any operation may be performed upon it,

so long as the equality is preserved intact.

The following are self-evident truths, called Axioms

:

1. If equal quantities be added to both members of an equation,

the equality will still subsist.

2. If equal quantities be subtracted from both members, the

equality will still subsist.

3. If both members be multiplied by the same quantity, the

equality will still subsist.

4. If both members be divided by the same quantity, the equality

will still subsist.

5. If both members be raised to the same power, the equality

will still subsist.

6. If the same root of both members be extracted, the equality

will still subsist.

All operations upon equations are founded upon these axioms.

74. The First Transformation.

There are four principal transformations to which equations are

submitted. We shall consider them in their order.

I. The object of the First Transformation of equations is to clear

an equation of fractional quantities.

Take the equation,

a b~d'^'^'

Now, we may multiply both members by any quantity, and still
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preserve the equality. Let us, then, multiply each term by aid, the

common multiple of all the denominators. We shall have,

ahdx aMy ahdc , ,

.

a b d -^

There is now a common factor in the numerator and denominator

of each fraction. Striking them out, we have,

Mx—ady=dbc + abdf,

an equation in which all the terms are entire.

It is generally more convenient to strike out the common factor

from the multiple before multiplying by it. AYe may thus say, that

to clear an equation of fractions, or.

To make the first transformation of an equation, form the least

common multiple of all the denominators; divide this by each denom-

inator in succession and multiply each term respectively by the re-

sult. Entire terms are to be multiplied by the conmion multiple as it

stands.

It is sometimes better to multiply each numerator by all the de-

nominators except its own, and the entire terms by all the denom-

inators.

Examples.

Clear the following equations of fractions.

^ X a 11 ^

"lb 4

Explajiatioii.—Here the least common multiple is 4&. Dividing it by 2 and
multiplying the numerator of the first term by 2b, we have 2bx for the first term

of the result. The other terms are found in like manner.

A71S, 2bx—4:a-{-3bc=by—4:b,

Ans. 2a^x+ c=10ay-h2ax,

Ans, Bx—3a^x^ \-x=12ax,

Ans, a—x—a^-\'X^={a+xy,

A71S, a(y\/x^cVx—c=ha^b,

2,
ax c X

3.
x—a x—1
Ax 12

=''•

4.
1 ^_a+x

a+x ~a—x'

5.
V^ V^+1 5b
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^/X -\- 1/ I

6. ^=1— "7=^» Arts, x-]-y=avx-\-y—a.

75. The Second Transformation.

II. Tlie object of the Second Transformation of equations is to trans-

pose terms from one member of an equation to the other.

Take the equation,

ax—cd=2'by-{-a.

Now, as we may add the same quantity to both members without

affecting the equality, let us add — 2by to both members. We shall

have,

ax—cd—2by=2by+ a—2by.

In the second member we now have two quantities equal with

contrary signs, which we may cancel, and we shall thus have,

ax—cd—2by=ia.

It will be observed that 2by has disappeared from the second

member, and appeared in the first with its sign changed.

Now suppose we desired to move the term ^cd from the first

member. Adding cd to both members, and cancelling as before, we
have,

ax~2by=a-\-cd.

The term has disappeared from the first and appeared in the

second with a contrary sign. Thus,
^

We may transpose any termfrom one member of an equation to the

other by changing its sign.

Examples.

Transpose all terms containing an unknown quantity to the first

member and all others to the second.

1. ax—b=^x^—y. Ans, ax-'3x^ -\-y=b.

2. a-\-25=—x^+y. Ans, x^—y——a--2^.



78 elemJents of algebra.

3. 21a^b—xy^l=x, Ans. —xy—x=l—21a^d.

A ^'^ ^ ^ A A ^ ^ ^^ A
4. -7

—

1=—-— 4. Ans. -= 1—;

—

4.

Remark.—Equations are usually cleared of fractions before transposing, but

transpositions may be made at any time.

Transpose all the terms of the following to the first member:

5. ax^—l= I}x—xx^. Ans, cx^ +ax^—bx—1=0,

6. 0=a-\- -:y'--y^-\-y^—y^. Ans, y^— y^+T^y^—Ty—a=0,

Ans, {a—b)x^— Vcc—b-y+ Vcc + i=0,

^ X a + b . a-\-b x
, ^ ^

8. 1= 7 . Ans. r +1=0.
a—b X X a— b

"Remark.—If tliere are indicated products in an equation, it is generally better

to develop such expressions before transposing.

In general, transpose unknotcn terms to the first member, and known terms to

the second.

9. -^^ c=- -^ .

c 5

b{a-\-byx-bc^ = {x-l)x^c.

ba^x+ 10abx+ ob^x—hc^=^cx—Zc,
Ans, ha^x + 10abx-\-bb^x—Zcx=hc^'-'^c,

76. The Third Transformation.

III. The object of the Tliircl Transformation of equations is to

so change an equation that the several powers of the same unknown
quantity shall enter it but once.

Let us take an equation with several powers of the same unknown
quantity; thus,

dax^—hx-\-x^—2x-\-x^—ax^= l.

Writing the terms containing the same power of the unknown quan-

tity together, and factoring with respect to these several powers, we
have,

{l-a)x^ + (Za-\-l)x^—{b + l)x^^l.

Or taking a numerical equation,

hx^—2x^-\-10x—x=ih',
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Simplifying, we have,

If an equation has any number of unknown quantities, the same

course may be pursued.

Practically to effect the third transformation,

Gather together the terms containing the like powers of the same

imhnoivn quantity or quantities, and factor with respect to those

several powers.

Examples.

Submit the following to the Third Transformation, transposing

unknown terms to the first member, and known to the second.

1. ax—'b + cx^-'X-\-l=z2x^. Ans. {c-^)x^— {l—a)x='b—l.

Caution.—Be careful in putting on or taking off a parenthesis with the —
sign before it.

2. l=a—V^Z'X'^—ax-\-dx^—x^^-^/a'X.

Ans. {l + V^—d)x^—{^—a)x=a'-l.

3. 3a;2-2a; + l=a2a;2--J3ic + ca;+/.

Ans, {^'-a^)x^ + (h^ -c-'il)x=f=l.

4. a^x^—cx=ax^—%x^-2h. Ans, {2—c)x+{a^—a)x^='Zh,

5. ^x^-'Zx + l= 'ix^-^x, Ans, —4a;3+2ic=-l.

77. Fourth Transformation.

IV. The object of the Fourth Transformation of equations is to

make the co-efficient of the highest power of the unknown quantity

unity.

Let us take an equation upon which the first three transforma-

tions have been already performed ; thus,

{da-l))x^ -(4. + c)x=l,

We may divide both members, that is to say every term, by the co-

efficient of x^j and we shall have,

- 4+ c 1

^a—h 3a—

b



80 ELEMENTS OF ALGEBRA.

The same course may be pursued in any case; hence, having per-

formed the previous transformations, to make the Fourth,

Divide each term ly the co-efficient of the highest power of the un^
known quantity.

Examples.

Apply the Foilrth Transformation to the following

:

oc 7)

1. {a + h)x^—x=h. Ans, x^—

2. {d-c^)x^-{a^+b)x^-]-2x=4:cI^-c.

a^ +b
Ans. x^— r^ x^ -Ho— c*

3. {2-d^)x=ai-A

4. 25.r=40.

5. (a—hYx=c\ Ans. x=- —
^ ^ {a— by"

Perform all four of the transformations in succession on the fol-

lowing; transposing unknown terms to the first member and known

to the second.

^ ax , bx ^ . be -\- bed
Z-j--d=z— + l. A71S, x= —.

b c ac—b^

a^ + b^ c-d a . ac^ ^- aHc -^-b^

c

8. — r- x — x^r-f^ Ans, X = -y-^

—

-J

j-^—

.

c c^ b bd—bc—bc^

9. ? _ 1 + 25 = ? - 1. Ans. a;= -102.
2 2 4

,^ 25 5a; , 10:c . 88

^^•y-ir = ^-l2-^- ^ns,x=^-^.

78. The Changre of Sigms.

Let us have the equation,

Multiplying both members by —1, we have,

ax—by=^Ci

a+ b '^+ b

2 4rZ3

3-
—c

/J/MO /*•

-*--bi

2--d^

Ans, x =
40

'25

c
n
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an equation in which all the signs have undergone a change. Hence,

tve may change the signs of every tenn of an equation, and the equality

luill still subsist.

79. Solution of Simple Equations.

An equation containing but the first power of the unknown quan-

tity or quantities is called a simple equation, or an equation of the

first degree.

It will be observed, that when we have submitted a simple equa-

tion containing a single unknown quantity to the four transforma-

tions in succession, the unknown quantity is made to stand alone in

the first member, equal to known quantities in the second. We
have thus found the value of the unknown quantity, and are said to

have solved the equation.

Then, to solve a simple equation containing but one unknown
quantity, we have but to submit it to all four of the transformations

in succession. These four steps, in few words, are,

1. Clear the equation offractions ;

2. Trayispose unhioiun terms to the first member and Tcnown to

the second ;

3. Factor the first member with respect to the miknow7i quantity;

4. Divide both members by the co-efficient of the unknown quan-

tity.

The value of the unknown quantity so found is called the Root of

the equation. The root of an equation, then, is such a value of the

unknown quantity as will verify the equation ; that is, when substi-

tuted for that quantity in the equation it will show that the two

members are identical ; thus, the root of

ax —b

2b
IS

2a-\-b^

Writing this in the equation, we have,

/ 2Z> \

"\2a + b^/ -b/ 2b \ ,

2 \2a+ by~~
'

b

Simplifying and clearing of fractions, we have,

4:ab+ 2b^=4:ab + 2b\
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Thus, the two members are entirely the same ; and the equation

must be true.

An equation may be made to have any two equal quantities in the

two members ; thus, cancelling equal terms in both members, we
have,

0=0.

By dividing each member by itself, any equation will be

1= 1.

The verification of a numerical equation is more simple ; thus,

solving

we have 2:= 50.

This for x in the equation gives,

3(50) 50_
-6—ro-^^

300-50=250

250=250.

Examples.

^ „ , 21-3a; 4x+ 6 ^ 5rc4-l .^„ ^ o
1. Solve, —g 9~^^

i~~*

2. ^:zl+^=3a;-12. Ans. x=6.
2 A

•

^^ax-b aJx_bx-a ^^,. ^^
3&

4 3 2 3 3a—2b

4. 2x -—=———. Ans. x=3.
z

a-\-b

h, a^{x-l)-\-ah{x—2)=b^, Ans. x=-^ .

V6 ^ 2{V^-Vh)
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ai-x -x + 1 ^ . 6ci-2ai
7. —£ =2, Ans. ^=-—7 •

8.Z^-_(i_!^^).,.. Ans, a;=-r-.

80. Degree of Equations.

The degree of an equation is determined by the greatest number

of times the unknown quantity or quantities enter any one term as a

factor; thus,

~
, !• are of the first decree.

6x^-^x=3 ) _. ,,
„ , , , > are of the second decree.

a^xi/+ox~4:Z—c
)

°xy

-7
a^xyz-{-bxy=4LZ

6x^-7x=3 )

_ ^ are of the third degree.

81. Complete and Incomplete Equations.

A complete equation of any degree is one which contains all the

several powers of the unknown quantity from that which determines

its degree down to the zero power; thus,

ax^-hob^+cx+ dx^'^zO

is a complete equation of the third degree of one unknown quantity.

a;° being unity, we may write it or not as we please.

When one or more of the intermediate powers are wanting, the

equation is said to be incomplete j thus,

x^-\-hx^=d

are incomplete.

bx'^—d\

5x=d >

d )

82. Complete Equations of the Second Degree.

When an equation has undergone the four transformations already

given, it is said to have its Simplest Form.

Let us take a complete equation of the second degree containing

but one unknown quantity ; thus.

x^ X 2x x^

a ~ 2
+ c =-d-

3
+

h
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Sabraitting it to the four transformations, we have,

2 ab _ah(d—c)

Now, the co-efficient of 2; is a known quantity, and we may let 2jt? rep-

resent it. So we may let q be equal to the second member. Using

these values in the equation, we have,

x^-\-2px=q - - (1).

This is called ihQ-Reduced Form of a complete equation of the

second degree containing but one unknown quantity. The terms,

however, may have different signs.

In any case, after making the sign of the first term pins, if not

so already, the other two terms, '^px and q, must present one of the

four following phases

:

Both plus

;

%px minus and q plus

;

^px plus and q minus;

Both minus.

The equation (1) written in every possible form gives the follow-

ing:

x^-h2px= q.

x^ —2px= q,

x^-\-2px=—q.

x^—2px=—q.

The application of the four transformations will manifestly bring

any equation of this character to the form of one of these equations.

They are thus called the Fbu7' Forms of a complete equation of the

second degree.

83. Solution of Incomplete Equations.

If the equation is incomplete, there will be no term containing the

first power of the unknown quantity; that is, 2j3=0, and the four

forms will become,

x^zzz+q.

x^= ^q.

We may extract the square root of both members of these equa-

tions, and shall have,

x=i±Vq-

it—iV^.
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It will be observed that the values of x in the last case are imag-

inary.

We have thus found the roots of the incomplete equations; and so

in any case,

To solve an incomplete equation of the second degree, reduce it to the

form of x2=q, and then extract the square root of loth members,

Eeduce the following equations to the form of a;^ V^px^=q.

- a^x^ %ax J2 ^ o %ab'^c h^
1. -T5 + -^ =0. Ans, x^ ^^x:

l^ c c^ a^c^ a^c^

2. + T^ = -^. Ans. x^+12x=:4:6.
X a;+ 12 5

Q ax
.
Sx^ ^ 1 + 5 x^ X AC ct^—l 1

0. -T- + —7- +1= —7 r + -- Ans. x^+—t—x=-,
4: b 4 a ab h

Eeduce the following equations to the form oix^=q^ and solve.

4. ax^+- = —cx^j^l, Ans, x—±
c y ac+c^

^ dx^— 2 , „ ,,
6. —-— =4a;2-14. Ans, x=±2.

o

i/^
6.i/'eii2 = i/£±S!. A«..=±z.

2 V 12

7. (a^-x){a-x)=z~2x\ Ans, x=:±a/^-^.

c,
/x \ ^ 2x^ .

S. xl--xj= 6—~. Ans,x=±6.

9. ax{b-x)i=a{l^x^)k Ans. x=±a/j.

84. Solution of Complete Equations.

Eesumiiig the equation,

x^+2px=q ' ' » ' (1),

we see that the first member may be made a perfect square by add-

ing p^ to it. This we are at liberty to do, provided that the same

quantity be added to the second member also. We may thus have,

x^+2px+p^=q+p^.
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Extracting the square root of both members, we have,

Transposing p to the second member,

^=-I^±A/q+p^ (2).

These, then, are the values of x in equation (1). There are always

two roots; written separately, they are,

x=—p + Vq+2^^ 3,nd x=—p—\^qi^.

It will be observed that the entire part in each root, —p, is alto-

gether the same, and is half the co-efficient of the first power of x in

the equation (1) from which they came, taken with a contrary sign
;

the radical parts are also the same, but one of them has the plus,

and the other the minus sign.

It is obvious that we may at once write out the roots of such an

equation, after it has been reduced to this trinomial form, by substi-

tuting the values of^ and q, taken from the equation itself, in these

roots.

For example, let us have,

ax^—-x='7—x^.

The application of the four transformations gives us,

3
c_ 14

^ 2«+2*^~2a+2"

Now, in this equation, p, the half co-efficient of x, is . ; and

14
q is

2^+ 2

These, in the formulas for the roots (2) give us

-4;^+j/2-ij2+(4^)''
^^^

'-4a + 4 \
14

2«+ 2"^
\4« + 4/

We may solve any such equation in the same manner; so that we

can say, in general,

To solve a complete equation of the second degree, containing one

unknown quantity,
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1. Apply thefour transformatmis in succession, thus reducing it

to theform x^ +2jpx=q.

2. Write the unknown quantity equal to half the co-efficient of the

first power of that quantity, with a contrary sign, plus and mi^ius

the square root of the second member, augmented ly the square of

this half co-efficient.

1. Solve

Examples.

10 14:-2x 22

By the four transformations,

3 108 126
^'--22^=- 22-

Writing out the roots,

54
,

. / 126
,
/54T2

^=22±j/-22-+(2-2) •

Performing the operations under the radical sign, as indicated.

_54 /144
""""22=^1/

(22)'

Extracting the root.

_54 12
^-22=^22'

Whence,

a;=3 and ^=tt. A.7is,

^ „ , 2x^ hx X x^ 1
2. Solve —+-=-+ -.+ -.

a a^ a a

X^ 5

—

x=l,
ao

-•4?*f-("-S^)

V
a^-h^ A/4:a^M a^-2a^h^+h^

2ab Y 4a2^3 4^aH'
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2ad 2a6

a;=7and:r=— . Ans.
a

:z;+ 60 3a;-5'

48 .165
a; + 3 iC+ lO ^•

a;4-12 ic _2G

4:, ax^—b=ox—r—, Ans,x=—+ t—. .

0^ 2a Zab

x 7
5. 777-^7^=777^—^. Ans. a;=14, a;=— 10.

6. -Y^ +— =0. Ans. x= — ±0.

*^ ^^^ 27
7. —^= ^^r^— 5. Ans. x=-^, cc=5."

8.
'^"^'^^

H ^^=^. ^^i5. a;=3, a;=— 15.
cc a; + 12

Z> 4 Z* 4 a a b

10. 5 -+ - 5= 77. ^W5. X=-, X=l.
dx—6 2x—d 2 4

85. Trinomial Equations.

A trinomial equation is one which, contains but two different pow-

ers of the unknown quantity. Such equations, when simplified,

have the form,

of+2px''=q.

Complete equations of the second degree, such as we have just

been considering, are a particular case of this general form, m being

2 and 71 unity.

The method just explained, of solving a complete equation of the

second degree, is equally applicable for the solution of any trinomial

equation, when m=2n', that is, when the equation has the form,

x^''-\-2px''=q.

"We can make the first member a perfect square in the same man-
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ner as in the last article, and we should have, after extracting the

square root of both members and transposing,

Now extracting the nth. root of both members, we have,

To solve such an equation, then, we adopt the same method as in

the case of an equation of the second degree, except that we write

the unknown quantity with an exponent equal to half of its highest

exponent in the reduced equation, equal to the roots, and after that

extract the nth. root of both numbers of these new equations.

For example

:

whence, a:2=2±Vl^ + 4,

and, thus, x=± 1/2± Vl 6

;

or, a;=±V2±4.

It will be observed that there are four roots in this equation.

Written separately, they are,

x—+^/Q, x—— V6y x= + V—2, SindLx= — V—2.

It will be observed, further, that two of them are imaginary.

It may be well to remark here, that every such equation has as

many roots as there are units in the number which indicates its de-

gree. Sometimes some of the roots are equal to each other and some
are imaginary.

Examples.

1. Solve, x'''-2x^=S. Ans. x=^/i, x=^'^.

Remark.—Where only two roots are given in the answers, the student may-

find the others.

2. x^-\-x^= 20, Ans, x=±2, x=±^/'^.

3. a;6+4:^;3=r:96. Ans. x=2, x— ^—\2.

4. (x-\-yY — {x-\-y)-=.^. Ans, x-^y—?>, x+y=—2.

Remark.—Here x + y is to be regarded as a single quantity.
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5. {x-iy-(x-l)= 6. A71S. a;=4, x=-l.

6. x—Vx=6, Ans. Vx=3, V^^— 2.

7. V^— v^=6. Ans, ^x=3, \^x=—2.

86. Simultaneous Equations.

Simultaneous Equations are those in which any quantity in one

of the equations is the same in quantity and quality as that quan-

tity in any other of the equations ; thus, if

5a;+ 3y=10, and

are simultaneous equations, and x in the one has a particular value,

as 5, it must have the same value in the other; and again, if it stand

for a particular kind of quantity, as pounds, in the one, it must be

pounds in the other. So, also, with y, or any other unknown quan-

tities which may enter such equations.

If the known quantities are represented by letters, the same thing

is true of them as well ; thus, if

ax-\-hy=c

dx—ay=zh

are simultaneous, then a must have the same numerical value and
represent the same kind of quantity in both equations.

It is plain that only simultaneous equations can be combined, as,

for example, added member to member, or multiplied member by

member, for if the same symbols should represent different things in

the several equations, the result of such combination, though a true

equality, would mean nothing.

Equations are commonly combined for the purpose of getting rid

of one or more of the unknown quantities which enter them ; or, as

it is said, in order to eliminate such unknown quantities.

There are three methods, commonly in use, of combining equa-

tions for the purpose of eliminating unknown quantities. They are,

1st. By Additi07i.

2d. By Substitution.

Sd. By Comparison.

In general, the first thing to be done with equations preparatory

to combining them by any one of these methods, is to subject them

to the first three transformations. The same unknown quantity
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will then enter any one of the equations but once, if the equations

are of the first degree. If of a higher degree, any particular power

of the same unknown quantity will enter but once.

87. Elimination by Addition.

Let us now consider these three methods of elimination in the

order given.

Take two simultaneous equations of the first degree, one numer-

ical and the other literal, in order to make the case more general,

and suppose them already brought to the proper form ; thus,

5ic-3?/=10

ax-\-lij—c,

Now, we may multiply the first equation through by «, and the

second by 5, without disturbing the equality in either case. AYe

shall thus have,

5ax+ 5by=6o,

We may further change the signs of all the terms of either of the

equations, and still preserve the equality. Changing the signs of

the second, we have,*

.6ax—3ay=10a
5ax-\-6di/=:5c.

Now, adding the equations member by member, we have,

—3ai/—5by= —6c+ 10a.

and from this,

_5c-'10a
^~ 3a + ob'

In like manner, we may find the value of x ; or, we may substi-

tute this value of y in either one of the equations, and find it in

that way; thus, writing this value of ^ in the first of the given equa-

tions, we have.

-»ffsS)='»-

* It will be found best not to destroy the original signs, but simply to write the new ones

below, and a little to the right of the old oueu, as here shown.
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Solving,

_ 10^> + 3c
~ ^a + Qb'

It will be observed that the object in this method of elimination

is to make the terms containing the particular unknown quantity

•which we want to be rid of, cancel when we come to add the equa-

tions. These terms must be made entirely the same and must have

different signs, in order to do this. We multiply or divide the two

equations by any quantities which will cause the terms in question

to become alike, and if they have not already different signs, we
change all the signs of one of the equations to make them differ.

We may say, then, practically,

To eliminate a quantity hy addition,

1. Subject the equations, if necessary, to the first three transform-

ations ;

2. Multiply or divide either or both equations by whatever will

onalce the terms to be cancelled the same ;

3. Make the signs of these terms differ, if they do not already, by

changing all the sig^is in one of the equations, and then add meinber

to 7iiember,

The resulting equation will be free from the quantity in question.

Examples.

1. Solve -— — =—Y^ .

2 4

24-6a;
"ix-^- 4:y= —-—

.

Simplifying, we have,

"Ix- 2y=20

4:Sx+ 24y=24:,

Dividing the second equation by 12,

'7x-2y=20

4:x+ 2y=2.

Adding and then solving,

x=2.

This value of x in any of the above equations givea^

y=—S.
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2. Solve

3. Solve

\4:y-2x=S.

c ax=hy

\ x-c-y.

Ans, x=2f y=3.

. he ac
Ans. X = 7 , y = 7

4. Solve \
(2x=tj+^,

6. Solve

ax-{-by=c

fx+gy=h.

Ans. ^=4J, y=S^.

. cq—hh ali—cf
Ans. X = ———, y = ~.

6. Solves

fl3.+7,-341=f +f
2a;+|=l. Ans. ^=-183^' 2/=75—

.

7 Solve i^''^^^^^'^^^"^'''^^^^^"^^'^^^^
I 2x-\-10=3y + l. A71S. x=3j y=6.

8. Solve

b^x-
oHc
a + b

\-{a+ b + c)ay=a^x(2a + b)ab.

. ab ah
Ans. x= 7

, y= 7

b—a^^ a + b

88. Elimination by Substitution.

Eesuming the equations in the last article,

bx—dy=lO,

ax+by=^c,

let us find the value of one of the unknown quantities, as x, in terms

of the other m, say. the first equation ; that is, let us regard all the

quantities in the first equation as known, except x, and then find the

value of X, under this hypothesis. We shall have.

iC= 10 + 3y
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Now, we may place this value of x for that quantity in the second

equation; thus,

We have now an equation with but one unknown quantity in it.

Solving this, we have,

_5c—10^

Substituting this result for y in either of the equations, we have,

__ 10Z> + 3g

This is the method of elimination by Suhstitution, We may thus

say that,

To elwiinate a quantity by Suhstitution, find the value of such quan-

tity in terms of the remaining quantities from one of the equations,

and substitute this value in the other.

The resulting equation will be free from the quantity in question.

Examples.

1. Solve

x=zy—l

2. Solved y ^ ^^

{x+y=a

\
x—y—l,

(2x 3y_9_
5"^ 4 ~20

3x 2y_ 61

4 "^5 "120*

3. Solve

4. Solve

I a
+ 5=:l-CC

Ans. x=4:, y=3.

Ans. x=8f y=9.

. a+b a—b
Ans, ^=-j- > ^=-J-

A
1 1

Ans, »:=-, 2/=3-

5. Solve
^
U+|=l-«y.

Let the examples in the previous article be solved by this method.

Ans, «=— , y-
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89. Elimination by Comparison.

Take, again, the equations

Find the value of x in both equations in terms of y ) thus,

a

These must be equal to each other, and thus we haye,

10 + 3?/ _ c—hy
5 ~ a '

Solving, we have, as before,

_hc—10a

Finding x in the same way or by substitution, we have,

lOb-hScx=
3a-\-ob'

This is called the method of elimination by Comparison. Prac-

tically,

To eliminate a quantity by Con^oarison, find the value of the quan-

tity in both equatio7is in terms of the remaining quantities, a7id

place these values equal to each other.

The resulting equation will be free from the quantity in question.

Examples.

1 Sol
)l^^+ 30i/=l8

•
^^^^^

^l2a;-24?/=-2. Ans. x=h y=\.

2. Solve

7rc=61--^. Ans, a:=7, y=14.
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3. Solve -I
, . . fc—'bg cd—ag

abx=^
4. Solve

^

^

iahy=l-x. Ans, x=———>y=

5 Solve -1^+ ^=^^-^^

( 0.562;+ 13.42«/= 763.4. Ans. x=-?>%.^\

y= 58.54.

Let the examples in the last two articles be used for practice by

this method.

90. Elimination in General.

Let us now extend the principle of elimination to the solution of

equations containing any number of unknown quantities.

Let us have three equations which have been already subjected to

the first three transformations, and containing three unknown quan-

tities; thus,

2x+^— z=l ... - (1). *

'dx-2y-{-3z=2 ... - (2).

x+ y— z=3 - - - - (3).

Manifestly we may eliminate one of the unknown quantities from

any two of these equations, by either of the three methods already

given. Let us, say, combine the first two, and get rid of z. Multi-

plying the first by 3, and adding, we have

9x + '7y=5 - - - - (4).

In the same way, combining the first and last, eliminating z, we
have

x-\-2y=-2 ... - (5).

We now have two equations (4) and (5), with but two unknown
quantities. These we may now combine by any one of the three

methods, and shall have

24 , 23
a;=^-^and^=—

.
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Substituting these in either of the three original equations, we
have

32
11'

We have thus solved the group of equations. The same course

may be pursued with any number of equations, provided that

there are as many equations as there are unknown quantities.

Thus we may say, that

To solve a group of simultaneous equations, there being as many
equations as there are unknown quantities,

Comline the equatmis two and tioo, hemg careful not to unite the

same two more titan once, and always eliminating the same quantity,

until there are as many resulting equations as there are unknown
quantities remaining.

Combine these resulting equations in the same %my. We shall at

last have an equation containing a single unhnown quantity, which
may be solved. Complete the solution by substituti?ig the value of the

quantity so found in one of the resulting equations^ tvith two unknozvn
quantities in it, and so on.

Examples.
(x+y=10

1. Solve ja;+2;=19

Ans. x=B, y=l, ^=16.

2. Solve-

?y=4i--
/V

41__2

y=S4.--.

f X'\-y-\-z=dO

3. Solve } 8x-h4:y + 2z=50
i27x + 9y + dz=64:.

x-\-y=a—z

4. Solve-
'= CX

dz=fx.

Ans. x=lS, y=32, z=10.

Ans. x=i,y=—>i!,z=dGi.

abd

bd+ cd-\-bf

acd

'^'^bdT'cd + bf'

^ abf

"^bd-^-cd+bf

Ans. x=i
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-H—=« Ans.

6. Solved l +i=j ^_ ?_
11 2

2/ « b-Vc—a

01. Equations of Condition.

If we slioulil have more unknown quantities than we have inde-

pendent equations, we shall have more than one unknown quantity

in the last resulting equation.

If we should have more equations than there are unknown quan-

tities, we may eliminate all the unknown quantities, and thus have

a resulting equation between hnown quantities; thus, let us have,

y=ax-\-b,

y=cx-\-d.

y=fx-i-c/.

Placing the second members of the first two equal to each other,

we have,

7 , d—b
ax+ b—cx + d :.x= .

a—c

Then combining the first equation with the third, eliminating y, we
have,

ax-\-b=fx-\-g ,\

g-b

Placing these two values of x equal to each other, we have

—-—>, an equation in which there is no unknown quantity.

Now, if this last result is not a true equality, all the equations

from which it was derived cannot be true. They could not all be

satisfied at the same time for the same set of values for the unknown
quantities. Such a resulting equation between constants is called an

Equation of Condition; since it is the condition upon which the equa-

tion from which it is derived can be true.

When there are more equations than there are unknown quanti-

ties, there must thus be a certain interdependence between the con-

stants which enter them. The equations from which such equation

of condition is derived, cannot, therefore, be independent equations.
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Examples.

Find the equation of condition in the following groups of equa-

tions :

/ ax=l)

\cx=d
•

/^''''a=-c

ax=hy

cy=dx
. da aq

y=ax+ I)

y—a'x-^-h, -4ws. a=a'.

02. Simultaneous Equations of a Higher Degree.

Equations of a higher degree than the first can be combined and

a single equation found containing a single unknown quantity. The

method of elimination is altogether the same as that already ex-

plained; but the resulting equation is generally of too high a degree

to be managed by methods falling within the province of this work

:

For example, let us have,

ax^ +hy=:c.

Solving the first equatian with respect to y, we have.

c—ax^

This substituted in the second, gives,

(!^)--s„.
which is an equation of the fourth degree ; and, in general, when
both equations are of the second degree, the resulting equation will

be of the fourth.

93. Simultaneous Equations of the First and Second Degrrees.

There are, however, two classes of simultaneous equations, beyond

the first degree, which admit of ready solution. They are,

1. Equations containing two unhnotun qtiantities, token one is of tlie

second degree and the other of the first,

2. When the equations are both of the second degree and homogeneous

with respect to the unknown quantities.
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I. Let US take the first case. Assume,

dx + 2/=12.

The value of y, in the second, in terms of a;, is,

y=12-3x.

This substituted in the first gives,

6x^-2x{USx)=:d6;

whence, x^—2x=3.

x=d and —1.

These values in the second equation give,

y=3 and 15.

A like course may be pursued in any such case, so that we may
always solve two simultaneous equations containing two unknown

quantities, when one of them is of the first and the other of the

second degree, by simply eliminating one of tlie unknown quan-

tities.

94. Homogreneous Equations of the Second Degree.

II. When the equations are homogeneous with respect to the un-

known quantities.

Take the equations,

x^—2x7/=l—3xy - - (1),

y^+Ax^-2= 5x^ - - (2).

The solution is accomplished by using an auxiliary quantity.

Applying the second and third transformations and making y=jpx,

we have,

x^-^px^=l. .-. ^'=^ - - (3),

p^x^-x^=2. .-. x^^-^— - - (4).

Placing these two values of x'^ equal to each other,

—=—?—
i+;?"~p2—

r

Whence, p'^—2p—Z

' i?=l±\/3 + l

^=3 and —1.
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Using the first value of ^ in either (3) or (4), we have,

The first values ofj9 and x in y=px, give, ^ _

The same course may be pursued with any two equations of this

class.

Examples.

1. Solve x^+y^'— 13

x+y=5. Ans, a;=3, 2/=2.

2. Solve cc2+^2=41
x^yz=—l, Ans, x=4:, y=6,

3. Solve a;8 +2/2=13
xy—y^= 2, Ans, x=3, y=2.

4. Solve x^+2xy+y^=z25
x 1

3a;—4y=- + T. Ans, x=d, y=2.

6. Solve dx^-2y^=z67

—2~^=9. Ans, x=5, y=S,

6. Solve dxy-2x^ = 10

2xy+ 2tj^= -^+25. ^W5. a;=2, 2/=3.

7. Solve a;+ 2/=13

^0^+^/2/= 5. A71S, x=Q, ?/=4.

8. Solve Vxy-\-x=16

V^-'Vy=l> Ans, x=9j y=4:,

05. Solution of Simultaneous Equations of any degrree.

The principles already established Avill enable us to solve many
equations of the second and higher degrees by the exercise of a little

ingenuity. No specific rules would prove of much service; so that

the general management of such cases may be best exemplified by a

few examples.

1. Solve a;3_?/3_i9 . . (i)^

X -y = 1 - - (2).
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We may divide the first equation by the second, and thus have,

x^+xy+y^= l^ - - (3).

Now the value of a; from the second, x=l + y, m equation (3),

gives.

Whence, 2/=-J±V6Ti
y=2,y=-3.

These values of y in (2) give,

x= — l, x=—2.

2.Sohe{x+yy + {x+y)=30 - - (1),

^3_^3_5 . . (2).

From (1) we have,

x+y=-i±V30 + i,

^+2/=-i±V-» ^+«/=5, x +y=-Q,

Dividing (2) by these values, we have,

x-y=l, x-y=-i.

From these values o^x+y and x—y, we have,

x=S, x=-i.

y=2, 2/=V=V-.

3. Solve x^-y^=117 - - (1),

^a:-yy-{x-y)= Q - - (2).

From (2) we have
x—y=S, x—y——2.

Dividing (1) by this first value ofx-y we have,

x^+xy-^y^=3^ - - (3).

Substituting the value of x from x-y=3f in (3) and solving, we

have,

x=6f x=—2.

4. Solve a;3+?/3 =152 - - (1),

X -hy =S - - - (2).

Dividing (1) by (2), we have,

x^—xy+ y^=19.
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Combining this with (2), we have,

ic— 5, x=3.

Whence, y=d, ijz=6, ^ _ _

5. Solve ics +2/2=74 - - (1),

xt/ =35 - - (2).

Multiplying (2) by 2, we have,

2xy~l!0 - - (3).

Adding this to (1), we have,

x^+2xy-\-y^=14:4:.

Whence, x-\-y=12 - - (4).

This with (3) will complete the solution ; or, subtracting (3) from

(1), we have,
x^ — 2xy-\-y^=4:.

Whence, x—y—2.

This with (4) gives,

x=7y y=5.

6. Solve a;—y+V^—^=0
x+y=S,

Follow the same general course as in the second example.

A71S. a;=6, y=2,

7. Solve x^+y^= 9 ' - - (1),

x^y-hxy^ = 6 - - (2).

Multiplying (2) by 3 and adding to (1), we have,

x^ -{-3x^y-}-3xy^ +y^= 27.

Taking the cube root of this,

x + y=:d - - (3).

We may write (2) thus,

xy{x-{-y)= 6.

This with (3) gives,

3xy=6 - - (4).

From (3) and (4) we have

x=l, y=2.

8. Solve Sx^+12Sy^=SD20
2x + 4:y=lQ. Ans. x=2, y=3.
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9. Solve x+y—lO

V^=4.
•

Ans. x=S, y=2.

10. Solye -'-1=3

!«=,. Ans. x=Qj y=S.

11. Solve x^+2xi/+y^=e4:

a;2-i/2= -16. Ans. x=3, 2/=5.

12. Solve x^-3x+ xt/=14:+ 3i/

x^+xy-[-6x=l!0—5y. Ans. a:=5, y=2.

13. Solve Sxy+4:x-4:ij^ +10=21/

16x^ — Qx+ ^y-hd=10xy. ^^ Ans. x=l, y=2.

14. Solve ic+V^y 4-^=14

x^+xy+y^=:SL Ans. x=2, y=S.

96. Kadical Equations.

"We shall now give some further examples of the manner of solving

equations containing radical quantities. No invariable method can

be pointed out.

If there is but one radical in the equation, we may make it stand

alone in one member, and then by raising both members to a power

equal to the index of the radical, it will disappear. If there, are two

radicals, by placing them in different members and raising to two

successive powers, they may be made to disappear ; but generally the

resulting equation is of too high a degree to be easily managed.

When there are fractional quantities entering the equation, it may
often be greatly simplified by suppressing common factors.

1. Solve 6—Vx-\-i=x.
Transposing,

— \/x-{-l=x—6.
Squaring,

a;+l=a;2— 10a;+ 25.

Solving,

x=8, x=3,

«-!
,

2. Solve • /- , -l= V2a;-4.
ViC—

1
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Dividing the numerator of the fraction by the denominator,

Squaring, ~ -

X= 4:.

3. Solve a-{-yx—b=Vx + a^'

Squaring, a^ +2aVx—b + x—I)=zx+a\

Simplifying, 2aVx—b= h.

Squaring again, 4^a^{x—h)=l^,

Whence,
4^3

X
4. Solve i A_yp^^V«+

y X b b

Squaring, ?_^?+^4^+ « « + ^

Z^V^ ^^ i=

Simplifymg, Z-— =0.
^ bVx

Transposing and squaring,

x^~~ b^x
*

Clearing of fractions, a^b^ =^ax^ + 4:a^x ;

whence, ic^+ojic^—-.
4

—a±^ab^+a^
x=-

2

5. Solve -— — H =V ir.

Getting rid of common factors,
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Clearing of fractions,

Simplifying and transposing,

Squaring and dividing by«, x=.- .

6. Solve Vi— Vic—5=1. Ans. a;=9.

7. Solve «-^=V^c^2rt^>. Ans. x=a^-\-h^.

8. Solve — =Vx+ l. Ans. x=—-r-.

Va;-1 « ^ + -'-

9. Solve VT^+I— 2= a/^+11. Ans. x=b,

10. Solve :^L^= V^-3. Ans. a;=4.
a;—

9

3 //^_L^

11. Solved/ =a. ^^5. a:=a3c— 5.

12. Solve a/Y+VYTx-2, Ans. x=S.

13. Solve r/a + \/x=c. Ans. x=(cr—a)\

9
14. Solve xi + {x-9)i=. ^. Ans. x=U.

(x-9)^

6

x'
15. Solve i/l6^^V^iJ2T45=-. Ans. x=2.

f X

16. Solve -+^^—^=T. Ans. x=(2ab-i^)k
X X

97. Inequalities.

We shall now give a few principles with regard to Inequalities.

Two inequalities are said to subsist in the same sense when the

greater quantity is in the same member in both; thus, 5>2 and

7>3 are in the same sense. When the greater quantity is' in the

first member of one, and in the second of the other, they subsist in

a contrary sense ; thus, 5>2 and 3<7, are in a contrary sense.
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1. We may add the same quantity to loth memhers of an inequal-

ity, or subtract the same quantity from loth members, witho2it chang-

ing the sense.

For example, add 5 to both members, and then subtract it from
both members of the following

:

7>3.
We have,

12> 8, and 2>--2.

If we subtract 10, we have,

-3>-7.

This last result is true, considered in an algebraic sense.

This principle enables us to transpose terms from one member of

an inequality to the other, by changing the signs, as in an equation.

2. If both members of an inequality be multiplied or divided by the

same positive quantity, the setise loill not be changed; but if the mul-

tiplier be negative, the sense will be changed.

For example, multiply both members of 7> 5 by 5. We have,

35>25.

Multiplying by —5, we have,

-35<-25.

If we multiply by —1, we change the sense and the signs at the

same time ; hence, we may change the signs of an inequality if we
at the same time reverse the sense.

3. WJien both members of an inequality are positive, we may raise

to any power; or lue may extract any root, provided we use only the

positive roots.

For example, raise both members of 7>5 to the second power.

We have,

49>2o.

Extracting the square root of this last inequality, we have,

7>5;

but we could not take the negative roots and say

-7>-5.

These principles will enable us to transform an inequality so as

to make any quantity stand alone in one member, greater or less than

a resulting quantity ; thus, let us have,

3a;-9>21.
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Transposing and dividing, we have,

ic>10.

Examples.

1. 2a;+ 5>12. Ans. iOj.

2. ~—Kx+ 4:. A71S. a;<10.

3. |._|<iO-6a;. ' Ans,x<^.
5 2 57

, X ^ dx . ac—db
i. —\-o>c . Ans, x>—^——.

*&8. Problems.

A problem is a question proposed for solution.

The solution consists,

1. In translating the given conditions into algebraic language,

and thus deriving one or more equations, involving the given and
the required elements ; and

2. In the solution of the resulting equation or equations.

Represent the required elements by x, ?/, etc., and then use these

quantities as though their values were known.
Be careful in forming an equation to put like quantities equal to

each other; that is, men=men, pounds=pounds, etc. Be careful,

also, that the quantities are expressed in a common unit.

What two numbers are those whose sum is a, and whose
difference is J ?

Here, although two numbers are required, it is not necessary to use

more than one unknown quantity ; thus.

Let a:= the greater.

Then a—x=. the less.

From the condition, we shall have

x—{a—x)=^h.

2x=a+ b.

a+ h ,,x=——y the greater

;

z

a + b a— h ., ,

a -—=——-, the less.
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"We may also use two unknown quantities in the solution of this

problem ; thus,

Let X = the greater, and

y — the less.

Then x-\-y=a,

and x—y—h ;

whence x
__ct + i_

-h
,

h

2 "2'

2

a
"2*y

These results may be translated into English thus:

2%e greater of two quantities is equal to the half sum, 2>lus the

half difference.

The lesser of two quantities is equal to the half sum, ininus the

half difference,

2. What number is that from which if 5 be subtracted, two-thirds

of the remainder will be 40 ?

Let ic=the number.

Then, ic—5=the remainder.

Trom the conditions, |(a;—5)=40.

x= 65.

3. A horse said to a mule: If I give you one of my sacks we
shall have an equal number; if I take one of yours, I shall have

double the number you have left. How many had each?

Let x= the number the horse had.

y= the number the mule had.

Then, x—l=y + l,

and x+ l= 2{y—l),

whence x=7, ^=5.

4 Divide 64 into two parts which shall be to each other as 3 to 5.

Let Sx=: one part.

Then bx= the other.

But 3x + 5x=64:,

Whence, a;=8.

3a;=24 one part,

5a;=40 the other.
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5. Divide a into two j)arts wliich sliull be to each other as i to c,

, ah ac

6. A man left 12,400 to be divided between two sons and a servant.

Tlie sons' parts were to be to each other as 3 to 2, and the servant

was to liave half as much as the son who received the smaller sum.

How*much had each ? Ans, $1,200, $800, $400.

7. A person upon being asked his age, replied: that J of his age

multiplied by ^ of his age would give a product equal to his age.

How old was he? ^
Ans. 16 years.

8. A and B have the same income; A contracts an annual debt of

\ of his income ; B lives upon f of his ; at the end of 10 years, B
lends A money enough to pay off his debts, and has 160/ left. What
was their income ? yl?is. 280Z.

9. A man, fifteen years after his marriage, was asked the age of

himself and of his wife at their marriage. He replied that he was

then twice as old as his wife, but that now he was only once and a

half as old. What were their ages? Ans, 30 and 15.

10. A person passed J of his age in childhood, -^^ in youth, \ and

5 years besides in matrimony, at the end of which time he had a son,

who died 4 years before his father, having reached half his father's

age. What was the father's age ? Ans. 84.

11. A privateer runniug at the rate of 10 miles an hour discovers

a ship-of-war 18 miles off pursuing at the rate of 8 miles an hour.

How many miles will the privateer make before the ship overhauls

her?

Let x= the distance tlie privateer will make before she is overhauled.

Then, a;+ 18= the ship's corresponding distance.

X
r-r will be the number of hours required by the privateer to reach the point of

a; + 18
union. —-

—

o

Since these times must be equal, we have,

X a;4-18 ,-=-g-, whence,

.T=-90.

It will be observed that our result is negative. We must, then, reckon back-

ward 90 miles to find the place at which the vessels would Jiave been together.

will be the time required by the ship.
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Tins results from the fact that positive and negative quantities do not differ

essentially, but merely in their positions with respect to the origin of reckoning.

It is thus that the algebra takes no note of the word " pursuing," except in its

essential sense of traveling on the same line with the object with which this

relation obtains. So in general, the algebra always interprets words which have

relative meanings in their broadest sense. It thus makes no distinction between
" will be " and " has been," " up " and " down," " to the right " and " to the

left," etc.

A negative result shows that there has been some error made in the use of

words in the enunciation. It is to be interpreted in a directly contrary sense

from a positive result.

12. Find two numbers such that the first added to three times the

second will give 11 ; and three times the first less twice the second

will give zero. Ans. 2 and 3.

13. Find three numbers such that three times the first increased

by twice the second will give 16 ; and twice the third less the first

will give 6 ; and five times the third divided by twice the second will

give 2. Ans. 2, 5, and 4.

14. There are three numerals expressed by single figures which

added together give 8; written in a certain order tlieygive five times

the number expressed by the second and third written together ; if

the first and third be written together, they express f of the number
formed by writing the first and second together. What are the num-
bers ? A71S. 1, 2 and 5.

15. "What three numbers are those, which if tliree times the first

be added to twice the second and this sum divided by the third, will

give 4; and if three times the second be added to five times the third

and the sum be divided by the second, will give 7 ; and if four times

the sum of all the numbers be divided by 2, will give 22 ?

Ans. 2, 5, and 4.

16. A man upon being asked his own and his wife's ages, replied

that his age divided by his wife's would give one-fifteenth of her age

;

but that if 30 had been first subtracted from his own age, the result

would have been one-thirtieth of his wife's age. How old was each ?

Alls. 60 and 30.

17. The length of a rectangular field exceeds its breadth by 10

chains, and it has 2000 square chains in it. What is its length and

breadth ? Ans. 40 and 50.

18. What two numbers are those which if the first be taken from
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the second and the difference multiplied by the first, the result will

be four times the square of the first ; and if this difference be squared,

the result will be 64 ? Ans. 2 and 10.

19. A merchant has two sorts of tea, one worth 75 cents a pound
and the other one dollar. He wants to make a mixture of 25 pounds

which he can sell at 90 cents. How many pounds of each must he

take ? Ans. 10 of the 1st and 15 of the 2d.

20. A hare is 50 leaps before a greyhound, and makes 4 leaps to

the greyhound's three; but two of the hound's leaps are equal to

three of the hare's. How many leaps must the greyhound make to

catch the hare ?

In such a case as this, we must first fix upon a unit of distance, which here

may be either one leap of the dog or one of the hare. Let us take the length

of the hare's leap as the unit ; then, the length of the dog's leap will be f times

that of the hare's.

Now, if X be the number of leaps the hound must make, the hare will in the

same time make -^x leaps. This number of leaps made by the hare, added to

the number of leaps it is in advance, will be the distance, in our assumed unit,

from where the dog is to the place where the hare is caught. But the dog will

pass over a distance equal to fa; ; that is, the number of leaps multiplied by the

length of one of them ; hence,

ix+m=^. .'.

ic=300. Ans.

21. Two trains are trayeling towards each other at the rate of 20

and 33 miles per hour, respectively ; they are 265 miles apart. How
long before they will meet ? A7is. 5 hours.

22. If the trains had been traveling at the rate of a and b miles

per hour and had been c miles apart, how long would they take to

come together ? c
Alls. x= : .

a-hb

From this formula, tell at once what the time would have been

had the rates been 2 and 3, and the distance 10. Also, if the rates

had been J and J, the distance ^. Also, if the rates had been 5 and

—7, the distance 6.

23. Two travelers set out at the same lime to meet each other,

being 154 miles apart. If one travels at the rate of 3 miles in 2

hours, and the other at the rate of 5 miles in 4 hours, how far shall

each travel before they meet, and after what time ?

Ans. Distances, 84 and 70. Time, 66 hours.
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Let letters be used for tlie numerals, and tlie results be applied to particular

cases, as above. So with any of the preceding or following problems.

24. A can do a piece of work in 5 days, and B can do the same

ill 7; working together, how long will they be at it?

Ans. 2|J- days.

25. The half of A's fortune less B's is equal to 13,000; B's for-

tune less one-fifth A's gives zero. AVhat sum had each ?

Ans. A, $10,000, B, $2,000.

26. Wliat two numbers are those which cubed and added together

give 35, and which if the first be squared and multiplied by the sec-

ond, and this result be added to the product of the second squared by

the first, will give 30 ? Ans, 2 and 3.

SECTION VIII.
^

SYMBOLS AND 00.-DISCUSSIONS.

99. The entire absence of value is represented by the symbol 0,

called zero. A man who is altogether destitute of money, has

dollars. This is the ordinary meaning of zero; hnt in algebra it

has a somewhat more extended signification.

A man may not only be destitute of money, but he may liave less

than none at all, in an algebraic sense, as we have seen in Art. 26;

he may be in debt. In such a case, zero is the point of division be-

tween his assets and liabilities.

Again, if Ave agree to reckon distances upon a right line or scale

from a particular point upon it, such point, having no distance from

the origin of distances, is the zero point. We have a familiar ex-

ample of this in the thermometer; the position of the zero point

upon the scale being a mere matter of agreement.

Thus, zero in algebra is but the point of separation between all

positive quantities on the one hand, and all negative quantities on
the other. If a positive quantity be continually diminished, it will

approach zero as a limit ; but as we cannot conceive of a quantity so

small that there cannot be a smaller, we could never find the smallest

possible quantity. But that which continually approaches a limit

may be said to have the limit itself for its extreme value; and so
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is often said to he a quantity smaller than any assignahle quan-

tity.

The symbol oo , called infinity, represents a quantity than which

a greater is impossible. It is the limit of all augmentation. We
may approach it to any possible degree of approximation, but can

never reach it.

100. Combinations of and 00.

Any product which has in it as a factor, must itself be zero ; thus,

«xO=0.

For if zero be taken any number of times, it will still be zero ; or

if any quantity be taken zero times, we shall have zero as well.

Zero divided by any finite quantity is equal to zero ; thus,

a

For, since the product of the divisor and quotient must produce

the dividend, we must have for the quotient to give with a, the

dividend ; or, more briefly, zero times the fractional unit, gives

zero.

A finite quantity divided by zero, gives Infinity; thus,

a

For, as we diminish the divisor, we increase the quotient. "When

we have made the divisor the least possible, the quotient must be

the greatest possible, that is, infinite.

Zero divided by zero, gives any quantity whatever, or, as it is

ssiidf is Indeterminate ; thus,

-=a.

For, any quantity, a, the quotient, multiplied by the divisor 0,

gives the dividend.

Any quantity divided by infinity gives zero ; thus,

-^ = 0.
00

For, as the divisor is increased, the quotient is diminished.

When the divisor is the greatest possible, the quotient must be the

least possible, or zero.

Infinity divided by a finite quantity gives infinity ; thus,

00'

= 00.
a
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For, when the dividend is the greatest possible, the divisor being

constant, the quotient must also be the greatest possible, or infinite.

Thas we may say that,

1. Zero multiplied hy any quantity is zero;

2. Zero divided hy a finite quantity is zero;

3. A finite quantity divided by zero is i7ifinite;

4. Zero divided hy zero is any quaiitity;

6. A finite quantity divided hy infinity is zero;

6. Infinity divided hy a finite quantity is infinite,

101. Vanishing* Fractions.

1. Sometimes an algebraic fraction reduces to the form |-, under a

certain hypothesis made upon the quantities which enter it, when
is not the true value of the fraction ; thus,

^"" a^—x^
when a=a;, becomes,

This is not the true value of y; for, before making the hypothesis,

resolve the numerator and denominator into their factors ; thus,

_ {a—x){a^ -\-ax-\-x^)

^~
{a + x){a-x) '

and cancel the common factor, x—a-, thus,

a^+ax+ x^
^ a+x

Now make «=a;, and we have,

3«2 3«5 ,, , , „

y=^^— =-7- , the true value of y.
Za /i

2. Again,

— ( <^^—^^
\ _ 9

-r, , (a-\-x)(a—x) /a-\-x\ 2a

^ {a—x){a—x) \a—x/x=a
3. Again,

" \a^-X^/a:=a

* This notation shows that a is to be made equal to x in the expression ; read, when x is

equal to a.
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But,

_ (a—x){a—x) _/ a—x \ _ _
'^~

{(x-x){a'^ ^ax^x^)\a^ -^ax^-xVx=a~^(i^~
'

Such expressions are called Vanishing Fractions. They appear

to be equal to | for a particular hypothesis, but really are not so.

They reduce to this form from the presence of a concealed common
factor which becomes zero under the particular hypothesis. When
such factor is stricken out, the true value results under the hypoth-

esis. As we have seen, the true value may be either -^ , - , or -

.

102. The Problem of the Couriers.

The discussio7i of an expression consists in making every possible

supposition upon the arbitrary quantities which enter it, and inter-

preting the results.

The following problem gives rise to some interesting results.

Two couriers traveling on the same straight line, one at the rate

of w miles an hour, and the other at n miles an hour, are separated

by a distance of a miles at 12 o'clock m. When will they be

together ?

A B
! ^ I

i I

m n

Let one of the couriers be at A and the other at B. The distance

from A to B will be a.

Now, let the couriers be moving to the right, and let us reckon

all distances from A as the origin of distances,—those to the right

of A being positive, and those to the left negative.

Let the courier at A be traveling at m miles an hour, and the one

at B at the rate of n miles an hour. Using two unknown quanti-

ties, let t be the number of hours, counting from 12 M. until the

union takes place, and x the number of miles to be traveled by the

courier at B to reach the place of meeting. Then we shall have,

nt=x - - - (1),

and mt=x-\-a - - (2).

Combining these equations and eliminating Xj we have,

mt—nt=a.

771—

n
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This value of t iii (1) gives,

na
y—

for the distance traveled by the foremost courier. Now, let us take

the root, t=- , and make every possible hypothesis upon a, m,

and 71, and ascertain what t will denote in each case.

I. First let aie a positive quantity^ and m>n.
In this case the denominator of the fraction which expresses the

value of t, will be positive, and since a is also positive, t must be

essentially positive.

We shall have to add t hours, therefore, to 12 m. in order to find

the time at which the couriers will be together.

This is what common sense would tell us, since we simply have

the case of one courier pursuing the other at a more rapid pace, and
so must be constantly gaining on him and at last must overtake

him.

II. Let a he positive, and m<n.
In tliis case the denominator of the fraction is negative and the

numerator positive; t is, therefore, negative.

We must, hence, subtract t hours from the origin of time, 12

o'clock; that is, reckon backwards to find the time at which the

couriers toere together,'^

This we can readily understand, also ; for since the courier in ad-

vance is, under the hypothesis, traveling more rapidly than the one

in the rear, a moment before 12 o'clock, there was less distance be-

tween them, and less the moment before that, and so there must
have been a time when they were together.

III. Let a he positive, and m=n.
In this case the denominator of the fraction will be 0: hence

/ is CO

.

This is plainly as it should be, since with a certain distance be-

tween them, and traveling at the same rate, they cannot be together

in any finite time. The result go is here equivalent to never,

IV. Let a he 7iegalive, and m>n.
In this case, the denominator of the fraction is positive, but the

numerator negative, t is, therefore, negative. We must reckon

backwards to find the time of conjunction.

* See remarks under problem 11, page 110.
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a being negative, places the courier who is traveling at the rate

of n miles an hour, in rear of the other; and since he is moving
more slowly, they must have been already together m the past.

V. Let a he negative, and m<n.
t will be positive, and the meeting has yet to take place.

VI. Let a he negative, and m=n.
t is infinite, and may be eithei^ positive or negative. The couriers

never have been, and never will be together; or we may say they

were together, and that they will be together an infinite time either

in the past or future.

VII. Let a=0, and m>n or <n.

t is zero; and the couriers were together at 12 o'clock. They
manifestly never could have been together before, and can never be

again.

VIII. Let a=0, and m=n.
t becomes %,

That is, any time may be added to or subtracted from the epoch,

12 o'clock.

Since the couriers are together at 12 o'clock, and are moving at

the same rate, they have always been, and will always be together.

IX. Let a=0, m— 0, and\i—^.

Under this hypothesis, we have again jf=
S-.

Here the couriers are

together and are not moving at all. Of course they always have

been and always will be together.

X. We may now fix the value of any three of the four quantities,

t, a, m, or n, at pleasure, and thus determine the remaining one.

Let the instructor make such hypotheses and require the student to

determine and interpret the results.

We have not yet entirely exhausted the possible hypotheses upon

the quantities which enter the expression under consideration. We
may make m and n negative in succession; in which case the couri-

ers would be traveling in opposite directions ; or we may make them
both negative at the same time, in which case they would be travel-

ing to the left. Let the instructor give such exercises.

103. The Problem of the Ligrhts.

The discussion of the Prohlem of the Lights, as it is called, also

gives rise to many interesting and instructive results.

The problem is this

:
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Given, two lights, placed anywhere upon a straight line, to deter-

mine the point or points which will be equally illuminated by each.

We must first know, obviously, the law which governs the illumi-

nating power of light; and, upon this point, physics teaches us,

that,

The intensity of a light at any distance is equal to its intensity at

the distance 1, divided hy the square of the given distance ; that is,

if a light has an intensity, say 10, at the distance of one yard from it,

at two yards its illuminating power will be — ; at three yards, — ;

at X yards, —

.

Then let the lights in question be placed upon the line A B, one

at A, and the other at B.

A c V B

a< ^ > h

Let the distance between them be c, and let the intensities of the

lights at the unit of distance be, respectively, a and h. Suppose the

point P to be one point equally illuminated, and let its distance from

A, the origin of distances, be x', its distance from B will be c—x.

Let distances to the right of A be positive ; those to the left will be

negative.

Now, the illuminating power of the light A, for the point P, will

be — ; and that of the light B for the same point, will be-r^ --,

X (c ~~x

)

Since the quantity of light from each of the lights for this point is

to be the same, we must have

a h

x'^ [c-

Solving this equation, we have

c^/a ,x=—— -' and
Va+vh

cVa

Va—Vb
Since we find two roots of the equation, there must be two points

of equal illumination, so long, at least, as the roots are of different

values.
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Now, to discuss these two expressions,

I. Let c he positive^ and a >b.

The first root will manifestly be positive ; the point corresponding

to this value of a: will, therefore, be found somewhere to the right of

A. Its distance from A will be c times the fraction ———- . But

since a is greater than h in this /case, the denominator is less than

twice the numerator, and, hence, this fraction is greater than J. c

times the fraction must, therefore, be greater than \c. oc is thus

ft

greater than -, or the point P must be farther from A than it is from

B.

This is what common sense would teach; for, the stronger light

being at A, the point equally illuminated must be nearer tlie lesser

light.

The second root under this hypothesis is also positive, and since

in the fraction,

—

ir, the denominator is less than the numerator,

the fraction will be greater than unity, and consequently c times it

will be greater than c. x is thus greater than c, that is, this second

point lies beyond B, the feebler light.

This must be so, since, as we move to the right of the lesser light,

the difference between the quantity of light from the two sources

becomes less and less. It Avill, thus, at last be zero ; that is, we

shall reach a point which will receive the same quantity of light

from each.

II. Let c he positive and a<b.

Under these hypotheses, the first root will still be positive, but it

will be less in value than c; that is, the corresponding point Avill lie

nearer to A, now the feebler light.

The second value of a; will be negative; that is, the second point

will lie to the left of A.

In this case we have but changed the places of the lights, and of

course the circumstances are jnst reversed from those in the pre-

vious case.

III. Let c le positive and a=b.

C\/ Cl c
In this case the first root becomes, x= -/==^ ; that is, the first

2Va '^
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point is midway between the lights. Since the lights are equal,

under the hj^pothesis, this is manifestly true.

The second root becomes,

c^/~a

The farther we recede from the lights, the less will be the differ-

ence in the quantity of light at any point; but this difference will

not become zero, or, in other words, the quantity of light will not be

entirely equal until we have reached an infinite distance, which, of

course, can never be.

IV. Let c he negative and a > or < b, or a=b.

The effect of making c negative, is to place the light whose inten-

sity is 1) on the left of the other, the light having the intensity a

being still the origin of distances. The separate discussion of the

several relations of a and h to each other in this case would give the

reverse of the results already considered.

V. Let c=0 and a> or <b.

Both roots in this case become 0, and thus the origin is equally

illuminated.

[The supposition that c is 0, places the two lights together at the

origin. The lights, however, are of different powers. It is thus laid

down in several late works on the subject, that this point cannot be

equally illuminated by the two lights, and consequently that the

analysis fails for this case. Several attempts have been made to ex-

plain the anomaly ; but in reality it should seem that there is no

failure and no real difficulty.

Let it be remembered that our equation is deduced under a postu-

late borrowed from physics with regard to the effect of light at dif-

ferent distances. The algebra accepts that law as absolutely true,

and its results must be interpreted strictly under that hypothesis.

Let us then approach, say, the light whose intensity is a at the unit's

distance. AVhen we have reached the distance J, its intensity is, by

the law, T—-^=4«^; at the distance
-j-J-g-,

it is 10,000a; at it is go.

(2)

The light whose intensity is h, or has any other intensity at the unit's

distance, is also 00 at the point zero. Since, then, under our assumed

law, both lights are infinite at the point 0, that point is equally il-

luminated, and the roots are truly zero. The results of the analysis



122 ELEMENTS OF ALGEBRA.

may be further vindicated by using mathematical lines, and thus re-,

moving the question entirely beyond the laws of physical science.

See note at the end of the book.]

VI. Let c=0 and a=b.

The first root becomes 0, and the second % ; that is, one of the

points is at the origin, and the other anywhere we please.

This is easily understood. '

VII. Let a and b he negative in succession, or together.

In this case both roots are imaginary.

This is as it ought to be, since under our assumed law of physics

the absence of light, or total darkness, cannot be reached until the

distance from the source becomes infinite. There is thus an infinite

separation between absolute light on the one hand, and no light at

all on the other. Less than no light is, therefore, impossible.

VIII. Let a=0, b=0, c=0.

Both roots become f, and thus all points are equally illuminated,

and this must be true since no point would have any light at all.

104. General Properties of Equations of the Second Degree.

Equations of the second degree containing but one unknown
quantity possess some important properties which we shall now pro-

ceed to investigate.

Resuming the general equation,

x^-\-2iJX=q (1),

let us complete the square and transpose all the terms into the first

member. We shall have,

or, (a;+^)2_(^+j^2)=o.

Regarding this as the difference of two squares, we may write,

{x-\-p-^/q+p^){x-\-p-\-^/qTp^)=0 (2).

This equation can be true only upon the supposition that one of

the factors composing the first member is equal to zero.

We may, then, have either,

x+p—\/'q+p^—^, or.
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From these we get,

£c= —^ + ^q +2J^ : the first root, and

x=—p—Vq+P^ ' the second root.

As there are no other possible values of x which will satisfy this

equation, we may say that,

1st, Every equation of the second degree has two roots and only two.

By inspection of equation (2) we see that,

2^. The first member of every equation of the second degree, luhen

the second member is 0, is composed of tivo factors, having the un-

lc7ioiun quantity for the first term in each, and the respective roots

with their signs changedfor the other terms.

If the roots are given, the equation can be constructed at once
;

thus, for example, let the roots of a certain equation be cc=« and
x=—b. The equation will be,

{x—a){x-{-l)=0, or

x^ \-'bx—ax—a'b=0.

Examples.

The roots being 4 and — 5 ; what is the equation ?

A71S, a;2—a;—20=0.

The roots being ah and —c: a and a^: —7 and 8: —6 and —5:

rr and— -^: —1 and +1: V— 1 and —V— 1: what are the equa-

tions in these several cases ?

105. The Sum of the Boots.

Let us now add together the two roots,

x' =—p-\-Vq-\rp'^

x"z=z—p^^/q-]-p^

using x' and x" to distinguish them. We get,

x'-\-x"z=z—'-lp.

Hence we may say, that,

3d Tlie sum of the two roots is equal to the co-efficient of the first

power of the imhnown quantity ivith its sign changed.
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106. The Product of the Boots.

Now, multiplying the roots together,

ic' =-p+ Vq+p^

«"= ^p— Vq+p^ ; we have,

Hence, we may say that,

4:th, The product of the iivo roots is equal to the second member
with its sign cha?iged.

107. The Greatest Numerical Value of q when Negative.

Since the product of the two roots is always equal to q (the second

member), with a contrary sign, if ^^ U negative, the roots must have

like signs; and when added together, the algebraic sum will be their

numerical sum. Now, this sum is, as we have seen, equal to 2jo.

We thus have the sum of two quantities given : and now let us

find how to divide this sum into two parts, so that their product

shall be the greatest possible.

Let d be the difference between the two parts, 2j9 being the sum.

Then, the greater will be (Prob. 1, Art. 98),

and the less.

P+T,

P-P
Their product must be equal to q, and we shall have,

Now, as d is diminished, q will increase, until when fZ=0, q will be

equal to p^, and will then be the greatest possible : that is to say,

when the roots are equal, their product will be the greatest possible.

qy therefore, can never be greater than^;^. This, however, is under
the supposition that q is negative.

When q is positive, since the roots multiplied together must then

give —q, they will have contrary signs, and when added, will give

their numerical difference, instead of their numerical sum. There is,

then, no limit to the values of q in such a case.

Hence, we may say, that,
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5th. When the second memler is nerjative, it can never he numeri-

cally greater than the square of one half the co-efficient of the first

j)0wer of the unknotun quantity,

108. Discussion of the Fotir Forms.

Eesuming the Four Forms already given (Art 82), viz.

:

x^+2px= q - - - - (1).

x^—'ilpx= q - ~ - - (2).

x^+^x^-q - - - - (3).

x^—2px=—q - - - - (4).

Writing the root, respectively, we have,

x='-p±Vq+2^^ - - - (!)•

x=+p±Vq-\-p^ - - ' (2).

x=-p±v-q+p^ ' -'(3).

x=-i-p±V^q+2^^ ' - W-

Since Vq-^p^ is greater than p, the radical parts of the roots in

the first and second forms arc greater, numerically, than their entire

I)arts. The radical parts will therefore govern the signs in these

two forms; so that in the first and second forms the signs of the

roots will be unlike, and the negative root will be numerically the

greater in the first, while the positive root will be the greater in the

second.

In the third and fourth forms, tlic roots will be imaginary when

q is numerically greater than p^. This should be the case, since we
have proved that it is impossible for q, when negative, to be greater

than p^. When q has such a value, it shows that the equation from

which the roots came is impossible.

When q is less than p^, the radical parts in the last two forms will

be less than p, the entire parts ; so that when the roots are real in

the third and fourth forms, they are both negative in the third, and

both positive in the fourth.

U q=p^ in the third and fourth forms, the radical parts of the

roots reduce to zero. The roots will then be equal in either form,

both being —p in the third, and +p in the fourth form.

When/>=0, the roots in the first two forms reduce to ±V^, and

in the last two ±V-^* Under this supposition, the roots are thus

equal with contrary signs in the first and second forms, and are
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always imaginary in the third and fourth. This ought evidently to

be the case, since by making p=0 in the forms themselves, they re-

duce to two sets of incomplete equations ; thus,

x^= q

Making q=0, the roots of the fifct and third forms become,

x=—2)±p.

Those of the second and fourth,

x=+2y±2^'

Or, X— 0, anda;=— 2j!?

x=.-\-2p, and a:= 0.

Thus, under this hypothesis, one of the roots in each form be-

comes zero.

The reason of this readily appears, for if q be made in the forms

themselves, we have, for the first and third,

x^-\-22)x=0\ - - {a)

and for the second and fourth,

x^-2jpx=0. - - (5)

These may be written,

x(x+ ^p)=0
x{x-2p)= 0.

We may satisfy these, by making either one of the factors zero
j

thus,

x=0 or (x-\-2p)=0

x—0 or {x—2p)=0.

"Whence the roots are,

x=0 and x=—2p
x=0 and x= -\-2p.

We might at once divide out x from equations (a) and (h), and
thns reduce them to equations of tlie first degree ; and, generally,

wJienever we can divide one equation through hy the unhnoiun quart"

tity, one of its roots is zero.

If ;j=0 and q=0, the roots are 0.

This supposition reduces the equations themselves to

ic2=0 .-. .T=Oanda=0.

Much the same discussion may be had from the forms themselves,
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by the use of the 3d and 4th general properties established in Arti-

cles 105 and 106.

For example, in the first form the roots must have unlike signs,

because their product must give —q', they are unequal in numerical

value, and the negative is the greater, because their algebraic sum

must give —2p.

Let the student carry on the discussion.

SECTION IX.

ARITHMETICAL PROaRESSION.-RATIO AND PROPORTION.-
GEOMETRICAL PROGRESSION.

109. A series is a succession of terms, any one of which may be

derived from the preceding term or terms according to a uniform law,

called the laiu of the series.

110. Arithmetical Progression.

An Arithmetical Progression is a series in which any term may be

derived from the one preceding it by adding a constant quantity,

called the common difference ; thus,

1, 3, 5, 7, 9 - - etc.,

is such a progression, the common difference being 2. When the

common difference is positive, as in this case, we have an increasing

progression. When the common difference is negative, we shall have

a decreasing progression ; thus,

9, 7, 5, 3, 1,-1,-3 - - etc.,

is a decreasing progression, in which — 2-fs the common difference.

111. Formula for the Last Term.

Any term with which we choose to begin the series is called the

first term; that with which we end it, is called the last term. These

two are the extremes.

Let
a, l, c, e, f - - etc.,

be an arithmetical progression, in which d is the common difference.

Then we must have,

h=a-\-d, c=h-\-d=a + 2df

e=c-\-d=a-h3d; etc.,



128 ELEMENTS OF ALGEBRA.

and it is evident that any term may be found by adding to the first

term as many times the common difference as there are preceding

terms.

Then if I represent the last term, and n the number of terms, we
must have,

l=:a + {n—'\.)d*

If d be negative, the formula will be,

l=a—(7i^l)d.

Hence, we may say that,

To find any term of an arithmetical progression, multiply the com-

mon difference hy the nimiber of preceding terms, and add this prod-

uct to the first term, if the progression is increasing, or subtract it

if it is decreasing,

112. The Sum of Equi-distant Means.

Let us have an increasing progression of a definite number of

terms. If t represent the term which has m terms before it, and d
the common difference, we shall have,

t=a +md - - - - (1).

Now, if we reverse the order of terms, we shall have a decreasing

progression, with —d for the common difference. If t' represent the

term which now has m terms before it, we shall have

f=l-md - - - - (2).

Adding (1) and (2), we have

t + t'=a+ l

Hence, we conclude, that

Iji any arithmetical progression, the sum of the two tei^ms 'which

are at equal distances from the extremes, is equal to the sum of the

extremes themselves.

113. Formula for the Sum.

If 5 represent the sum of ^^ terms of a progression, we shall have,

s=a + h + c+ - - - - y+ ^'+ ?.

Reversing the order, we shall have,

s=li'h+j+ - - - - c + h + a.
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Adding these equations, member to member, we have,

2s=(a+ l) + (l+k)+ - - - - i^k+ b)-\-{l+a).

The terms taken two and two, as shown, give equal sums, from the

principle just established ; and there will be as many of these partial

sums as there are terms in the progression ; so that we shall have,

2s=(a + l)7i; whence

(a-\-l)n

Hence, we may say, that.

The stem of a definite number of the terms of an arithmetical pro^

gression, is equal to half the sum of the extremes^ multiplied hy the

number of terms.

The two formulas,

lz=a+ {n-l)d - - - - (1),

sJ^ (2).

are suflBcient to solve all ordinary questions touching an arithmetical

progression. There are altogether five arbitrary quantities,

ttf If dy n, s,

entering these formulas. "We may assume any three of them at pleas-

ure, and, regarding the other two as unknown, we may combine the

equations, and thus deduce their separate values.

For example, let d, n, and s be given to find a and I.

Substitute the value of I from (1) in (2), we shall have,

_^[a-{-a-\- {n—l)d]7i
s- - .

From this,

__2s—{n—l)dn
^""

2^
•

This value of a in (1), gives,

j_2s'{-{n'-'l)dn

Let the student be required to find the formulas for determining

any two of the elements when the other three are given by the

instructor.

H
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Examples.

1. In the progression 1, 2, 3, etc., of 14 terms, what is the last

term, and what tiie sum of the terms? A7is. Z=14, 5=105.

2. In 2, 5, 8 of 17 terms, find I and s.

Ans. I=60J 5=442.

3. In 7, 7J, 7J, of 1^6 terms, find I and s.

A71S. Z=10f, 5=142.

4. In J, I, I, of 20 terms, find I and 5.

A71S. l=—li, 5=— 13}.

6. In 0, J, 1, - - - - of 11 terms, find I and 5.

A71S. 1=6, 5=27^.

6. In —10, —12, —14, - - - - of 6 terms, find I and 5.

A71S. l=—20y 5=— 90.

7. Given a=2, n=6, Z=22, to find d and 5.

Ans. d=6, 5=60.

8. Given J=2, w=12, 5=96, to find a and Z.

Ans, «=— 3, Z=19.

9. One hundred stones being placed on the ground in a straight

line, two yards apart, how far will a person travel who sliall bring

them one by one to a basket, placed at two yards from the first

stone ? Ans. 20,200 yds.

10. A railway train moves two yards the first second, four yards

the second second, six yards the third. In how long a time will the

train be traveling at the rate of a mile a minute ?

Ans. 14.66 sec.

114. Ratio.

Ratio is the relative magnitude of two quantities of the same

kind. The measure of this relationship, or, as it is commonly said,

the ratio itself, may be always found by dividing one of the quan-
h n

titles by the other ; thus, if a and h are the quantities, then - or 7 ,

expresses the number of times the one contains the other, and is

their ratio, or the measure of their relative magnitudes.

There is some difference in usage as to which quantity shall be

made the divisor ; thus, the ratio of 3 : 6 is about as often written,

^ as - . The question depends upon which of the two is regarded

as the standard ; the ratio in this case being J, if 6 is taken as the
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measure ; or 2, if 3 is so taken. It is perhaps better to make the

quantity mentioned first, called the antecedent, the divisor, and the

second quantity, called the consequent, the dividend. At any rate,

we shall adopt this method.

116. Proportion.

When two ratios are equal to each other ; as,
^

-=-,- - - - (1)
a c

the four quantities are said to be in proportion. They are often

written,

a '. h :: c : d*

This and equation (1) express entirely the same truth, and the

one may at any time be used for the other.

We may say, then, that,

A proportion is an equality of two ratios*

The ratios are called couplets ; thus, « : J is the first couplet;

c : dis the second couplet. Of the four quantities in a proportion,

the last one is called a fourth proportional to the other three. If the

second term is used also as the third, such term is called a mean
proportional. In this case the last term is called a third propor-

tional. The first and last terms are called extremes ; the second and

third are called means.

116. Let us have the proportion,

a '. h :: c '. d;

or, writing it as an equation,

h d

whence, Ic—ad, - - (1)

Hence, we may say that.

The product of the means is equal to the product of the extremes.

The converse of this is equally true ; for dividing each member of

(1) by ac, we have,

- = -: ov a : :: c : d.
a c
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Whence,

If the i^roduct of two quantities is equal to the product of iioo other

quantities, tioo of them may be made the extremes, and tiuo the means

of a proportion,

117. Assume again the proportion,

a '. h '.: c \ d; ov

-=- - (1)
a c ^ ^

We may multiply both terms of each fraction by any quantity, as

m', thus,

ml md ^ J /o\— =— ; .'. ma : mo :: mc : md, - - - (2)ma mc ^ '

We may also divide both terms of each fraction by any quantity,

as m \ thus,

mm a l c d
(3)

m m
We may extract any root, as the mih., of both members of (1), and

shall have,

^=^, .-.^a-.^b-.-.^c-.^/d. - . (4)
\ a yc

Or, again, we may raise both members of (1) to the wth power,

thus.

Hence, from (2), (3), (4), and (5), it follows that,

1. We may multiply all the terms of a proportion hy the same quan-

tity,

2. We may divide all the terms of a proportion ly the same quan-

tity.

Remark.—It is plain that tlie multiplier or divisor may be different for each
couplet.

3. We may extract the same root of every term of a proportion,

4. We may raise every term to the same poioer.
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118. Dividing unity by each member of the equation

b d ,

-= - ; we have,
a c

T=^— ; .',o:a::cl:c.

Whence,

Consequents may be made antecedents and antecedents consequents*

The quantities are then said to be in proportion by inversion.

Multiplying both members of

b d , c ,

-=-, by 7; we have,
a c' ^ b^

-=-
, ,\ a : c '.: b : d,

a b

Whence,

The antecedents may be made one couplet, and the conseque^its

another. The quantities are then said to be in proportion by

alternation.

119. Adding unity to both members of

• b d

and then subtracting unity from both, we have,

a c a c '

Whence, *±f=l±f; *^=:^«.
a c a c

From which we may write,

a-.b + ai'. c. d-\-c', a : b—c :: c : d—c.

Hence, we may say that.

The first antecedent may be added to its consequent, provided the

second antecedent is added to its consequent. The quantities are then

said to be in proportion by composition. In the same way the conse-

quents may be subtracted. The quantities are then said to be in

proportion by division.

Let us have two proportions with a couplet the same in each ; thus,

b_d ^ b_g
a~~ c^ (JtT'J*
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Then, ^

^-=f..
...

c\d\\f\g.
That is,

If the first couplets are the same in two proportions, the other two

couiMs form a proportion. ^

^ h d .^ mh nd ^r ^ -

120. From —=- we may write, — =—. Now, making m=
a c

'' ma 7ic

1± -, and^i=l±-, in this equation we shall have, after a slight

transformation,

b±^-b d±-'d
_ s

a±U c±^^.c

Whence, a±-'a :--?• h :: c±--'C : d±— d.
s s

That is.

We may increase or decrease antecedent and consequent hy like

jmrts of each.

121. Let us have two proportions,

a \ h :: c : d] h d a n
\ or, _ = -; •^= -.

f : g ::m: n
) c' f m

Multiplying the equations, member by member,

bg_ dn

af
~~

cm^

Whence, af : hg :: cm : dn.

That is,

We may multiply proportions together, term hy term.

122. From a : b :: c : d,

we have bc=ad; adding ab to both members,*

bc+ ab=ad-hab.

Whence, b(a + c)=a{b-\-d).
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And, from a previous principle,

a : b :: a+ c : i+d.

Hence,

Antecedent is to its conseque^it, as the sum of the antecedents is to

the sum of the consequents,

123. Where several proportions are written together, thus:

a : b :: c : d :: f : g :: f etc.,

it is called a continued proportion.

It is sometimes written thus,

a : c : f :: b : d : g.

The principles already explained may be readily extended to con-

tinued proportions.

124. The mean proportional between two quantities may be readily

found : thus, let it be required to find the mean between a and b.

We have, a : x :: x : b,

x^=ab,

That is.

The mean of any two quantities may be found by multiplying the

quaiitities together and extracting the square root of the product.

125. When one of two variables is expressed in terms of the recip-

rocal of the other, as,

1 m
x=-: or x= —

,

y y

the quantities are said to be reciprocally proportioiial. It is manifest

that one will increase as the other diminishes, and they are thus said

to vary inversely.

From this expression, we have,

xy=ly or xy—m.

Hence, the product of two such quantities is always constant.

126. Geometrical Progression.

A Geometrical Progression is a series, any term of which may be
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derived from the one preceding, by multiplying it by a constant

quantity called the ratio. It is a continued proportion.

The progression will be increasing when the ratio is greater than

unity: thus,

2, 4, 8, 16, 32, etc.,

is an increasing progression, whose ratio is 2.

The progression will be decreasing when the ratio is less than

unity; thus,

32, 16, 8, 4, 2, 1, J, etc.,

is a decreasing progression, in which J is the ratio.

127. Formula for Last Term.

Let us assume the geometrical progression,

a '. 1) I c '. d : e '. f \ etc.,

in which r is the ratio.

From the definition we shall have,

h=zar, c=br=a7'^, d=cr=ar^, etc.

Whence we see that the exponent of r, being unity in the expres-

sion for I), goes on increasing by unity for c, d, etc. ; so that for the

term which has n terms before it, calling it I, we shall have,

l=ar''-\

Hence, we may say that.

Any term of a geometrical progression mag hefound hy multiply'

ing the first term hy the ratio raised to a power whose exponent is

equal to the numher ofpreceding ter7ns,

128. Formula for the Sum.

To find a formula for computing the sum of any number of terms

of such a series, let us take a progression of a definite number of

terms,

a : h : c : d : - - - - : j : h : I,

the ratio being r.

Replacing each term after the first by its value in terms of the

first term and the ratio, and representing the sum of n terms by s,

we shall have,

s=a + ar-{-ar^ -i- - - - «r"~'^ + «r'*~'.

Now, multiplying both members of this by r,

sr=ar+ ar^ •\-ar^+ - - - ar'"^ + ar\
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Subtracting the first of these equations from the second, we shall

have,

sr—s=ar''—a;

whence, s= —
; or, since «7*" is equal to Ir,

Ir—a

an expression for the sum of any given number of terms.

"We have thus the two formulas,

Z=ar"~* and

s= , in which there are five arbi-

trary quantities. If we know all but one which enter either of them,

we can substitute the given values in such formula, and at once de-

duce the remaining one; thus, if a=2y r=2, and ?i=5, we shall

have from the first,

Z=2x2*=32.

If 5=15, a=l, and r=%, from the second formula,

15=—— ; whence, ?=8.
iil 1

129. To find the Formula for any Element.

"When any three of the five quantities, a, I, r, w, and 5, which enter

these two formulas, are given, we may combine the formulas, and
eliminate one of the remaining quantities, and thus find the fifth

quantity. AVhen a combination of the formulas is required, make
the combination and deduce a general expression for the desired

quantity, before substituting for the given quantities.

For example, let s=62, r=:2 and n=b. Combining the formulas,

eliminating /, we have,

whence, substituting the given values,

(2-1)62
:2.25-1

Substituting «=2, r=2 and 7^=5 in the first formula, we have,

Z=32.

When n is to be found, the resulting formulas will require the use

of logarithms, which are yet to be explained.
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Examples.

1. Given a=l, r=2, w=7, to find I and s. Ans. Z=64, 5=127.

2. Given «=4, r=3, 7i=10, to find ^and s.

A?is. Z= 78732, 5=118096.

3. Given a=9, r= J, n=7, to find Z and s.

/ Ans, Z=258}, 5=591:^^

4. Given «=6J, r= J, ?i=8, to find I and 5.

^W5. /=106f, 5=307t.
6. Given ^5=8, r=l, n= 15, to find Z and s.

Ans. l=j-^y s=16 + ,

6. Given «=|, r=^, n= ll, to find I and s.

Ans. l=jmh, s=HH-

130. To insert Geometrical ISIeans.

Let it now be required to insert a given number of geometrical

means between any two numbers, as a and b. These two quantities,

together with the means, will form a geometrical progression of two
more terms than the number of the means. If there are to be m
means there will be in + 2 terms. Now, from the formula

we have, "Vl
This is the value of the ratio when there are n terms, and a and I

are the extremes. But in the case in hand, a and b are the extremes

and?/i4-2the number of terms. Substituting these in the above

expression for r, we shall have,

(1)

This being the new ratio, we may now find the means successively

from the first term a ; thus,

7'A T'/^ "/'/^

For example, let it be required to insert 3 geometrical means be-

tween 2 and 32.

In this case w=3, a=2, and J=32.
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These in (1) give, r='^3J=^iQ=,2.

Whence the means will be 4, 8, and IG, and we shall have the pro-

gression,

2 : 4 : 8 : 16 : 32.

Examples.

1. Insert 5 geometrical means between 3 and 192.

Afis. 3 : 6 : 12 : 24 : 48 : 96 : 192.

2. Insert 4 geometrical means between 5 and 1215.

A71S. 5 : 15 : 45 : 135 : 405 : 1215.

131. The Sum of an Infinite Progression.

Let us now have a decreasing progression of an infinite number of

terms. The ratio will be less than unity. The formula,

s= ~, may be written.

s=
1 r-l

But, since r is less than 1, r^ will be less than r, r^ still less, and

BO the results will go on diminishing as the power is increased ; and
since n is infinite, r" is zero ; whence it follows, that the first term

of the second member of the above expression is zero, and we have

r-l

But, since r<l, we may write

a

That is to say,

TJie sum of the terms of a decreasing geometrical progression of an

infinite numher of termsy is equal to the first term, divided ty unity

minus the ratio.

What is the sum of the following?

Ans. 2.

Ans. f.

Ans, 8.

1. 1 : } : i - - - - to infinity.

2. 1 : i : i - - - - to infinity.

3. 4 : 2 : 1 - - - - to' infinity.
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4- i • A • 7*7 - - - to iafinity. Ans. J.

6. 1 : - :
—

- - - - to infinity. Ans. .

a a^
'' a—1

If the ratio of a geometrical progression is negative, the terms

will be alternately positive and negative. In substituting in the

formulas, be careful to give tlve ratio its proper sign.

6. Given, «=—2, r=— 3/^=5, to find I and s,

A71S, ^=-162, 5= -121.

SECTION X.

IiOGABITHMS.

132. If the number 10 be raised to the second power, we shall have

100 for the result ; thus,

10^= 100.

The exponent 2 is called the logarithm of 100. Let us write

several exact powers of 10, thus,

(10)"^ (10)"S 10", 10\ 10^ lO', etc.

Or,

(tV)2 1^, 1, 10, 100, 1000, etc.

The exponents,

—2, -1, 0, 1, 2, 3, etc.,

in the upper row, are the respective logarithms of

.01, .1, 1, 10, 100, 1000, etc.,

in the lower row.

If we should take any number which is not an exact power of 10,

the exponent would not be a whole number, but would be made up
of an entire part and a fraction ; thus, the number 25 is greater than

the first power of 10, and less than the second power ; whence 10

must be raised to a power greater than 1, and less than 2, to produce

25. Assuming that the fraction to be added to 1 to give the proper
exponent is .397940, we should have,

(10)'-^«"*°=25.

Here 1.397940 is the logarithm of 25.
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It is obvious that any number except unity may be used instead

of 10, as the fixed number, whose several powers are to be taken.

We may, then, say that,

The logarithm of a numier is the exponent of the potver to lohich it

is necessary to raise a fixed nu7nl)er, called the base, in oj'der to pro-

duce the give7i number.

The base of the Commo7i System, as it is generally called, is 10.

The base of the Napieran System^ so named from Baron Napier,

to whom the invention of logarithms is due, is 2.71828182....

The entire part of a logarithm is called the characteristic ; the deci-

mal part is called the mantissa.

133. Characteristic.

The characteristic of the logarithm of a number may always be

written at once from the number itself. The law for writing the

characteristic may be discovered from the following :

(10)* =1,0000

(10)3 = 1,000

(10)2 = 100

(10)1 = 10

(10)0 = 1

(10)- =.1 ^ /.

(10)-« =.01

(10)-^ =.001

(10)-" =.0001

It thus appears that the characteristic of all numbers greater than

unity is positive, and that the characteristic of all numbers less than

unity is iiegative ; and that.

When the number is greater than unity, the characteristic is one

less than the number of digits composing the number. If the num-
ber is partly decimal, only the entire part is to be counted.

When the number is less than unity, and is expressed as a deci-

mal, the characteristic is negative and one greater than the number
of O's immediately following the decimal point.

The mantissa, or decimal part, must be found in a table computed

for the purpose.

134. The following is the beginning of such a table, showing the

logarithms from 1 to 100

:

log 10,00C1= 4.

log 1,000 = 3.

log 100 = 2.

log 10 z=z 1.

log 1 = 0.

log.l = --1.

log .01 = --2.

log .001 = --3.

log .0001 = --4
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TABLE —Logarithms FROM 1 TO 100.

N.

1

Log.

000000

N. Log. N.

51

Log. N.

76

Log.

26 1 414973 1 707570 1 880814
2 301030 27 1 431364 52 1 710003 77 1 886491
3 477121 28 1 447158 53 1 724276 78 1 892095
4 602060 29 1 462398 54 1 732394 79 1 897627
5 698970 30 1 477121

/

1 491362

55 1 740363 80 1 903090

6 778151 31 56 1 748188 81 1 908485
7 845098 32 1 505150 57 1 755875 82 1 913814
8 903090 33 1 518514 58 1 763428 83 1 919078
9 954243 34 1 531479 59 1 770852 84 1 924279

10 1 000000 35 1 544068 60 1 778151 85 1 929419

11 1 041393 36 1 556303 61 1 785330 86 1 934498
12 1 079181 37 1 568202 62 1 792392 87 1 939519
13 1 113943 38 1 579784 63 1 799341 88 1 944483
14 1 146128 39 1 591065 64 1 806180 89 1 949390
15 1 176091 40 1 602060 65 1 812913 90 1 954243

16 1 204120 41 1 612784 66 1 819544 91 1 959041
17 1 230449 42 1 623249 67 1 826075 92 1 963788
18 1 255273 43 1 633468 68 1 832509 93 1 968483
19 1 278754 44 1 643453 69 1 838849 94 1 973128
20 1 301030 45 1 653213 70 1 845098 95 1 977724

21 1 322219 46 1 662758 71 1 851258 96 1 982271
22 1 342423 47 1 672098 72 1 857333 97 1 986772
23 1 361728 48 1 681241 73 1 863323 98 1 991226
24 1 380211 49 1 690196 74 1 869232 99 1 995635
25 1 397940 50 1 698970 75 1 875061 100 2 000000

135. General Principles of liOg-arithms.

The principles already established, Art. 50, with regard to expo-

nents in general, govern the use of logarithms, they being but a

class of exponents.

Let us repeat the principles referred to, however, in this connec-

tion, since they form the basis of all logarithmic computations.

Let m and n be any two numbers whose logarithms are x and y.

Then,
(ioy=m - - (1)

(10. - - (2).

Multiplying member by member, we have,

(lOy+y—inn,

whence, x+y=.\ogmn,
That is,

1. The sum of the logarithms of two numlers is the logarithm of
their product.
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Again, from (1) and (2) Ave liave,

{loy _m
(iOy ~ n '

^^'

711
(10)*-»'=— : whence,

- m

That is,

3. The cliffere7ice of the logarithms of tivo numbers is the logarithm

of their quotient.

"We have again, from (1),

((10)'/=^^ .-.

lOP'=7nP ,\

pxi=\og m^. .

That is,

3. Tlie product of the logarithm of a numher hy p is the logarithm

of the p po2ver of the numher.

If we extract the r root of both members of (1), we have,

(10)^= ^/m .\

-=lo(T ^m.

That is,

4. Tlie quotient of the logarithm of a nmnier hy r, is the logarithm

of the r root of the numher.

These four truths are called the general principles of logarithms.

Apply the foregoing princij^les in the transformation of the follow-

ing expressions into corresponding logarithm equations:

1. x= —, Ans. log x=\og rt+log 5—log c—log d.

2. x=a'^h''c^. A71S. log x=m log a-{-n log h+p log c.

a'^h-
o. x=

cnl'i
Ans. log x=^m log a—n log h—p log c—q log d.

4. x=a«h ?. Ans. log a;= — log a— '- log o.
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5, x=y arh-^'c^ Ans, log x= - log a—n\ogb+-^ log c.

6. x= -^^^. -4w5. log ic=log «+— log c— log b—i log d.
byd ^

^ {a + hycT /

{c+d)\/d^

Ans. log x=7i log (a +b)+m log c—log (c+c?)—J log d.

8. 0:= -—=. Ans, log a;= — - log («+ J).

ya + b ^

9. ic=: \^a^—x^, Ans, log a;=: — log («+ a:)+ - loff (a—x).

10. a;= («"»)*. ^fis. log x^mn log a.

136. Solution of Equations.

By the aid of logarithms we are enabled to solve what would other-

wise be difficult equations.

Solve the following

:

1. i

^ -^^

( X log 5=log 25. Ans, x= f^ ^ ,

log 5

2. 7^'"= 17.

Whence, V^log 7=log 17,

u- 1, • /
Jo^l^ A Agl7\8

which gives, y'^.zz-^—

.

^,w. a:=^-j^^j .

losr b
3. a"=5. ^?45. x=~—

.

log a

4. (a + b) ^= c. ^^.. ^-(i^^^-^y.

5. a"* =5. .4ns,
• ^='"(S-a>

137. Logaritlims of Decimals.

When a number is composed of the same figures, no matter how
its value may be made to change by moving the decimal point to
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the right or left, the mantissa will always remain the same ; the

only change being in the characteristic :. thus, if the logarithm of

2975376 is 6.354189, we shall have as follows

:

log 2975.376 =3.354189.

log 29.75376 =1.354189.

log 2.975376 =0.354189.

log .02975376=2.354189.

The mantissa, it will be observed, remains the same.

To prove that this is true, let n be any number whatever, and jt?

any other whole number, positive or negative.

Then, n x (10)'', will represent the product of oi by any exact

power of 10. We may write,

log {n X (10)')=log w+ log 10^= log n +p,

Now, in the expression, log 7i+p, since p is entire, it will be added

to, or if negative subtracted from, the characteristic; so that the

decimal part will remain intact. But to multiply a number by any
entire power of 10, positive or negative, is but to remove the decimal

point to the right or left ; and hence it follows that the mantissa of

the logarithm of a number expressed by any combination of figures

will remain the same, whether any part of it is decimal or not.

This principle enables us to disregard the decimal point entirely in

finding the mantissa of the logarithms of numbers.

138. General Properties.

When the base of a system of logarithms is greater than unity,

the logarithm of qo is +co, and the logarithm of is -co.

For assuming the exponential equation,

10'= 71,
•

n being any number and x its logarithm, we see that as n increases

X must increase, and when n is infinite x must be infinite also.

As n is made less and less, x must be diminished, until when 7i is

1, X is 0. If, now, n is still diminished, x becomes negative, and

when n isO, X is again oo, and becoming so from the negative side,

is still regarded as negative. Thus, the logarithms of positive num-
bers alone require for their logarithms all numbers from -co to

+ 00. There cannot, then, be any logarithms of negative quantities.

If the base is less than unity, the same thing will hold; except
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that the logarithms of numbers greater than unity will then be nega-

tive, and those of numbers less than unity will be positive.

It will be seen that the logarithm of unity in any system is zero.

139. Modulos.

Let us assume what is callecVthe Logarithmic Series^ leaving its

deduction for a more advanced course. It is,

log(l + ?/)=m(?/-^+^-^+ - . - - etc.),

in which we have the logarithm of a number, (l + 2/)> developed into

a series, in terms of a number, y, less by unity than the number

itself.

It will be observed that the second member is composed of two

factors, m and the series within the brackets. The factor m depends

for its value entirely upon the base of the system, and, for the same

system, is constant. It is called the modulus of the system. The

modulus^ then, of any system of logarithms is the constant factor,

which is common to all logarithms of that system.

The modulus of the Napieran system isl; the modulus of the

common system is 0.43429448.

140. Indeterminate and Identical Equations.

An Indeterminate quantity is one which has no fixed value,, but

admits of an infinite number of values in succession. Indeterminate

and arbitrary quantities do not differ in nature ; but it is usual to

call such quantities, when represented by the first letters of the

alphabet, arbitrary ; and when represented by the final letters, inde-

terminate.

An hideterminate Equation is one whicli contains at least two

quantities which can only be assumed in relation to each other

;

thus,

5a;— 4i/=9,

is such an equation ; x and y admitting of any number of sets of

values, but neither of them admitting of any specific value indepen-

dently of the other. Such quantities are called indeterminate, or,

perhaps more correctly, variables.

An Identical Equation is one which is true for all possible yalues

of the indeterminate, or arbitrary quantities, which enter it. For

example,
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ax+ hy=ax+ hyy

5a;+ 7a;2+4=5a;+7ic2+4,

are manifestly such equations.

An identical equation differs materially from the ordinary or de-

terminate equation, which admits of but a specific number of values

;

and also from the indeterminate equation, which is satisfied for any

number of sets of relative values of the variables which enter it. In

an identical equation, the co-efficients of the indeterminate quanti-

ties (Xf y, z, etc.), are no longer arbitrary, but have resultant values,

and so are themselves determinate.

141. Indeterminate Co-efficients.

Any identical equation containing but one indeterminate quantity

can be reduced to the form of

a-\-hx + cx^-\-dx^-\-Qi(i.=0 - - (1),

an equation in which a, h, c, d, etc., are called Indeterminate Co-effi-

cients, since they are co-efficients of the indeterminate quantity.

Kow, since this equation is true whatever value x may have, it will

be true when x=Q, Making this hypothesis in the equation, we
shall have,

a=0.

This value of a in (1) gives,

bx-\-cx^ +dx^+Qic.=iO,
Factoring,

x[h + CX+ dx^ + etc.) =0.

This may be satisfied for x=0, or,

l-[-cx-]-dx^+Qtc.=0 - . (2)

Now, X, in this equation, must admit of the same value as in (1)

;

hence, this must also be an identical equation, and is true for x—0.
This value of x in (2) gives,

and in the same way we may prove,

c=0,

d=Q',

and so for all the co-efficients of x.

Hence, we may say that,
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In an identical equation of one indeterminate quantity, the co-effi-

cients of that quantity are severally equal to zero,

142. Principle of Indeterminate Co-e£B.cients.

Let us now have the identical equation,

a+ bx+ cx^ +etc.7= a' + b'x+ c'x^ + etc.

Transposing and factoring, ^
«~a'+ (d-5>+ (c—c>2+etc.=0. I

Now, from the principle just deduced,

a—a'=0 .\ a=a'
b-b'=0 ,% b-V
c—c=0 ,', c—c'

etc. etc.

Whence, we may say that.

In an identical equation of one indeterminate quantity, the co-effi-

cients of the nice powers of that quantity i7i the two members are sev-

erally equal to each other, ^
This principle may be readily extended to identical equations con-

taining any number of indeterminate quantities. It is called the

Principle of Indeterminate Co-efficients,

143. Development of Expressions.

Let US now apply the principle of Indeterminate Co-efficients to the

development of algebraic expressions into series.

Take the fraction, r, and placing it equal to a development
X— Xi—X

of the proposed form : we have.

\—x—x^
=a-hbx-^cx^+dx^+ etc. - (1).

Since this developm^ent must be true for all values of x, this

must be an identical equation.

Clearing it of fractions, using the vertical bar for convenience,

we have,

l-{-2x=ai-b x-{-c x^+d x^-^r etc.

— ff -h — c + etc.

—a -b + etc.

Whence, by the principle of Indeterminate Co-efficients, we shall

have,



L0GABITHM8. 149

l=a /. «=1

0=c—b—a /. c=4
0=d—c—b /. <?=5

etc. etc.

These values, substituted for «, J, tJ, c?, etc., in (1) give,

•
^ \ =l + dx+Ax^+6x^ + etc.,

the desired development.

Examples.

l + 2a;
1. Develop -

—

— into a series. u4w5. l + 5a;+15a;2 4-45a;5+etc.

1—x
2. Develop into a series.^ 1 + x+x^

Ans. l'-2x+x^+x^~-2x^ + etc.

Ct X x^ x^
3. Develop into a series. Ans, 1

f- -r r + etc.

' 2 2;

4. Develop -

—

^—^ into a series.
JL '^~ AtX™"OX

Ans. l+a;+5a;2+13a;3+etc.

5. Develop -—r into a series.

In this case we have,

1

"Whence,

2x-\-x
- =a+ bx-\-cx^-\-ei(i.

l=2a x+U x^-]-2cx^+QiQ

+ .« + Z* +etc,

1=0
0=2«
etc.

Here we encounter an absurdity in the result, 1=0.

This shows that the development cannot be made as proposed.

Then, let us factor the expression thus, - x ^—— : now let us de-

velop TT-—- We have,

z=za+hx+cx+ etc.
2-\-x



150 ELEMENTS OF ALGEBRA.

Proceeding as usual, we have,

l=2a + 2b\x+ 2c\x+ etc.

And thus we have,

a\ b\ +etc.

l=2a. .-. «= f
0=2b + a, .-. b=-i.
0=2cy^b, .-. .=

i.

etc.. etc.

2 + a; ;;i 4 8

Now, multiplying both members by - , we have,

1 111^
=^-T+ ^^+ etc;

2x+ x^ 2a; 4 8

which is the true development of the original expression.

1 x~^
Here the first term — is the same as -—-; so that the absurdity

2x 2 -'

above arose from not starting our development with a low enough

power of X.

So, in general, when such an absurdity develops itself, it will be

found due to a like cause.

143. Partial Fractions.

The Principle of Indeterminate Co-efficients affords an easy method
of resolving a fraction into its partial fractions.

To do this, place the given fraction equal to the sum of as many
partial fractions as the denominator of the fraction has factors, the

several numerators of such assumed partial fractions being p, q, r,

etc.—quantities to be determined—and the denominators being the

several separate factors of the denominator.

For example, let it be required to find the partial of -r

—

r—.

We have,

—

r

1=——I

—

— , an identical equation.
a»r-x^ a-hx a—x ^

Clearing of fractions,

2a=ap—px \-aq-\- qx.

"Whence,

2a= ap + aq;

0--p + q.

Combining these two equations and eliminating qy we have.
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This value oip gives,

q=l.
Therefore,

2a 1 1
:=—

+

a^—x^ a+x a^x

Examples.

3a:—

3

1 2
1. Eesolve -r—t- into partial fractions. Aiis. ^-\——

•>x^—d ^ x—3 x+ 6

x^ 4- 4a: 11
2. Resolve -—'-—

^ttt tt: iiito partial fractions.
(a;— l)(a;4-2)(a;—3)

^ 111
AnS, 7 7T.+x—1 x+ 2 x—'6

1 2x-\-x^
3. Resolve —rr r^ into partial fractions.

(l—x)^ ^

When there are equal factors in the denominator, as in this case,

use all of the several powers ; thus,

l— 2x-\-x^_ p £ r

(l_a;)i~-(rZ^)i + (Ti:a;)2"^l-a;'111
Ans, h1— a; 1— a; 1— a;'

d '\~ X /w 1
4. Resolve -. r-r into partial fractions. Ans. —

,

—

.

(a-\-xy ^ a + x a + x

1 c
5. Resolve —z—

^

— into partial fractions.
x^ •\-2x—lo ^

2 2
Ans,

x+ b x—'d



NOTE.
PROBIiEM OF THE LIGHTS. \

The point maintained in the discussion of tlie problem of the lights, that c=
0, when a is greater or less than 6, is a legitimate hypothesis, and that the an-

alytical result is to be interpreted in a strict and natural way, is so entirely at

issue with all the late writers upon algebra, that a more detailed examination

of ihe question seems to be demanded than could well be given it in the body of

the text.

Let us, then, consider, first, the arguments upon which we are asked to aban-

don the analysis in favor of what is supposed to be common-sense.

It will be remembered that the roots of the equation derived from the con-

c Va
ditions of the problem are, x=— . Now, when c is made equal to zero

Va + V'b

in these roots, a and h remaining unequal, we must have a;=:0, for the value of

either root. The interpretation of this result, according to the general law,

gives us the origin of distances as the single point of equal illumination. We
then have the case of two lights, placed at the same point, differing, however,

much in intensity, and are required, by the analysis, to conclude that such point

is equally illuminated by the greater and the lesser light. This conclusion, we
are told, is not true.

The first distinguished author, whose reasoning upon the point we shall ex-

amine, says, in his University Algebra, "It is obvious that when two lights,

of unequal intensities, occupy the same place, there is no point in space equally

illuminated by them ; not even the point in which they are both situated."

To show how the result, a;=0, in this case fails, this author carries us back to

the original equation, —7-=. -a ; which, we agree with him, "truly repre-
X \C— X)

sents the conditions of the problem." He says, " If we put c=0, the result is

ah
—2=-5- ; an equation which cannot be satisfied hy any value of x whatever^ while
•B X

a>b or a<b. For, by substituting any value for a;, we shall always obtain two
unequal fractions. If x=0, the two members are two unequal infinities." And
BO he concludes, that, under this hypothesis, " the -problem,fails altogether, and

is impossible." But can two infinite distances be unequal V It is to be presumed
that no one will dispute that an infinite length is a distance than which nothing

can be conceived to be greater. But to say that two distances are unequal in

length, is incontestably to limit the less, and so to reduce it at once to the finite
;

hence, one of this author's infinities must be finite—a contradiction in terms.

The argument failing, the analytical deduction, x=Q, still demands our con-

fidence.

But, if possible, a more surprising turn, to avoid the difficulty, is made by
another eminent authority. It is the more marked, too, in this case, from the

fact that there has been a deliberate departure in the last edition of this author's
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University Algebra, as well as in his more elaborate work—a work which has
long held its place as a standard authority. In the previous editions the result

of the analysis upon this point was accepted as true, but without any attempt
at an explanation of the difficulty. We are now, however, told that,

" The hypothesis of c=0 places the two lights at the same point, in which
case they form one and the same light, whose intensity is equal to the sum of
their intensities taken separately. The conditions of the problem involve the
necessity of two lights, and the equation of the problem is found under this

hypothesis. This equation ought not, therefore, to respond t6 the case of a
single light. For, the interpretation of the result obtained from one equation,

can only give the cases which fall under the hypothesis. The hypothesis of
two lights, and the hypothesis of a single light, are not connected by any law
which aifords a common equation of condition. Hence, the results obtained on.

the supposition of c=0, do not belong to the problem."

Now this reasoning has a very plausible look ; but it should seem that it will

not bear investigation. In the first place, the two lights do not become one in

the writer's sense, any more than two circles of unequal radii become one when
they have a common centre. Again, if one of the lights be removed, the other

will remain, and since there is nothing requiring the lights to act simulta-

neously, the real question in issue is to find the point or points which would bd
equally illuminated by either light, separately, and, if you please, at times, how-
ever remote from each other.

Again, there is a most unmistakable connection between the two lights—the

very arbitrary quantity c in question. Suppose it should be required to find the

locus of a point moving so that its distance from two fixed points shall be equal

to a given line. Here are two points, but shall we be told that the distance be-

tween them may not be made zero, and so give us the circle—a particular case

of the ellipse ? or that, having the equation of a line passing through two points,

the two points may not be made one without destroying the equation ?

Again, this author tells us, in the works in question, that the discussion of a
problem consists in making every possible supposition upon the arbitrary

quantities which enter it, and interpreting the results. How does this agree

with his assertion in this case, that the " results obtained by making c=0 do not

belong to the problem" 1 Are we to understand that he considers it impossible to

make this hypothesis in an equation containing c ? Indeed the doctrine here

put forth would make short work with much of the higher mathematics, and
the whole doctrine of limits.

Nor would the difficulty in point be at all obviated, if one were to admit the

whole of this writer's reasoning. The equation must still respond, so long as c

is not absolutely zero. Well, now suppose the lights to be, the one very great

and the other very small, and that c is an infinitesimal. We shall have the

lesser light occupying the second or third consecutive point from the greater.

We must have one point of equal illumination between them ; but will common
sense with regard to lights, which seems to frighten our author into deserting

the analysis, be in any manner better saved ? Will not the feebler one be hope-

lessly outshone by the more sp^lendid luminary ?

But a third, and the latest writer upon this point, pronounces the results of the

analysis under the hypothesis in question, to be " evidently absurd." He says,

" In discussing this problem, some have committed the error of considering that.
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Bince for c=0 and a and h unequal, x=c =0, therefore, there is a point
Va±Vb

of equal illumination at the point where the lights are situated ! This is

evidently absurd, since the hypothesis is that the lights are of unequal inten-

sity. The error consists in not perceiving that the hypothesis, c=0, excludes

the hypothesis, a and h unequal. That the hypotheses, a> or <6, are excluded by

the hypothesis, cr=0, and that therd< is a point of equal illumination, is self-

evident."

It is to be presumed that the learned author uses the word " self-evident" in

an unusual sense, since the question he disposes of so summarily in the end,

had already cost him quite an argument, to say nothing of having been a stand-

ing puzzle for many years. This conclusion is further sustained by the fact

that he afterwards says, " Perhaps the student may think that these conditions

are no more inconsistent than those in I. 3 above, viz., c finite and a=h, and a

point of equal illumination," etc.

He goes on further to prove his " self-evident " proposition as follows

:

" Also, that a > or < & is inconsistent with c=0 and -^ = , rr (that is,
ic* {c—xy ^

that there is a point of equal illumination), appears from the fact that 6=0

renders the latter -^ = —, , whence a=b."
x^ x^

This writer seems to be unconscious of the fact that he has here stricken out

zero as a factor from both members of the equation ; thus, ax^=bx^, aO=bO .'.

a=b ; by which process it is easy enough to prove 2=4 ; a result which follows

at once, if we assume a=2, and &=4, in the above equation. It should seem
that the anxiety to escape a point which is thought to militate against common
sense, has led to some hasty writing.

And now let us look at the question upon its own merits. It should seem
that the chief difficulty arises from a most unwarrantable mixing up of physical

phenomena and analytical exactness. Analysis, per se, knows nothing what-

ever of the physical world ; nor does it in the slightest degree regard any lan-

guage but its own. It takes our conditions and renders its verdict, leaving us

to look out for ourselves and our physical applications.

The confusion in the minds of those authors who desert the analysis in this

question, and betake themselves to what they mistake for common sense, arises

from not sufficiently regarding the assumed law of physics under which the

equation in this problem is established. These are purely theoretical lights,

and the law is absolute, that their intensity shall vary inversely as the square of

the distance. When we pass within the distance unity, their intensities increase

with wondrous rapidity, until at zero—the limit of approach—we must have -

,

and -
, for their respective intensities : that is to say, the intensity of either

light at this point is nbsolutely infinite ; and thus, unless we may indeed have
" two unequal infinities," when the lights occupy the same point, that point

must be equally illuminated, however much the lights may differ in intensities

at the distance unity.

This may not, probably does not, accord with physical facts, which deal with
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tallow candles, or at best calcium lights ; but let us not charge the failure upon

the analysis, without first examining our assumed law of optics. That law

should undoubtedly read, " the intensity of a light at any [sensible] distance is

equal to its intensity at the distance unity, divided by the square of that dis-

tance." We should then be saved from the hypothesis in question, and from

the physical anomaly.

But in further support of the analysis, and to show how wondrously it re-

sponds to every hypothesis, let us rid the question entirely of physical phenom-

ena, and present it as an abstract question.

Let y represent the general ordinate of a curve which shall be equal to a

when the abscissa is made equal to unity, and which shall vary inversely as the

square of the abscissa. Then,

a
(1)

will be the equation of such curve. This equation may be readily constructed,

and we shall have a curve with two branches, BC and de as shown in Fig. 1.

By making x and y zero in succession in equation (1), it appears at once that the

axes are asymptotes to either branch, and thus that y is infinite when x is zero,

and zero when x is infinite.

Let us now have another such curve whose equation is.

y=
{c-xf

- (2).

This curve gives y equal to b, when c—x is equal to unity ; and the ordinate

whose abscissa is equal to c, is an asymptote to the curve.

Now, let it be required to find the common points of these two curves ; that

is, the points whose ordinates (they corresponding to the intensities in the prob-

lem) are equal. From (1) and (2), we must have.

x^ (c-xy*

the old equation, but with no question of light in it. The values of x may now

be found as before, and the points constructed. The curves would, under the

first hypothesis in the problem, take the general form shown in Fig. 2.
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Fig. 2.

These curves will show to the eye the results of all the hypotheses which
may be made in the problem. We shall make only the one in dispute, namely,

c=0, and a> or <b. The hypothesis c=0 makes the asymptotical ordinate co-

incide with the axis of Y, and the curves will assume the position shown in

Fig. 3.

Y
Fig. 3.

It will be seen that both curves approach the axis of Y, and that neithier can

ever reach it—the ordinate at the point zero being infinite—that is, resuming
the question of lights, the intensities of both lights are infinite at the origin,

and that point is equally illuminated. It will hardly be said that one of these

curves reaches the axis before the other.

THE END.
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ADDITIONAL EXERCISES.

Articles 28-30.

1. Simplify 21x + 7y-6x-6y-\- 10-16x-2,

'' dx + ^x'y-6x + 2x'y+ 2a;—5a;y2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

3Va—4:Vab + 5Va—6Vab—'7Va.

2Va+ h-d\/ar-i\/aTh+i\/aF,

V^+y
J

. V^ + y "s/xy _ ^/xy ^/x + y
^x- V^ V^ V^ Vic

^x-V^y-{x^y-\x^\y),

^x'y-^x^y'-Ux'y-\-\x^y'-x'y->r ^\

a—b s/a—l

~2c"^

Articles 33-35.

1. ^xyxdx'^y*.

2. ^abcx-Wh'c\

3. ia^b'x^a'h^.

4. 2a"'b'^ X —barb\

6. -Ja^J^c^ X a^^^c'".

6. a-'^Ve^-y^a'bc'^,

7. 27a'*d"c"'"x-52«''J '"c«.
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8. bahK^xlHah^c^.

9. a^ xa^xa^ xa^.

10. a;'"+'*-*«/'"-''xaf-"+'y'"+"--*.

11. -t«' b-"'c-ix-ia~'h'^c,

12. 5V2'x3'2*5-».

*
C6? cd' c c"

14.
^^^^ <^-'^-^ Sg-g 4<?'»y

Article 36.

1. («')', (a')', («*)^, (-a")', (a-)

m n 1 m

Article 37.

1. V^ Va^, ^/c^, ^/^^y^, V^s^*.

Article 38.

, Q. y. 22a'h* gAv ah^c^
1. Simplify ~— , —^, -TT^-^^""^

2xKjz^ ahK *

Article 40.

Rid the following expressions of negative exponents :

1. a-\ ab-\ ah~\ x'^y, l!a-'bc-\
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In the following expressions convert numerators into denomina-

tors, and the converse :

c-'d-" 25abc ' ab(a-b)-" 5^ij-i^'

Article 41.

Transform the following into equivalent expressions, using frac-

tional exponents

:

1. ^/a, V«S V« + ^, V{afi){(^-i), ^a{a-b)

Article 42.

Transform the following into equivalent expressions, using the

radical sign

:

Article 43.

Change the following into equivalent expressions, multiplying the

indices first hy 2, and then by 3, and then by m :

V(ib% ^/a\a-b), V-vT^—T,' V -i?^r

Article 44.

Transform the following into equivalent expressions having com-

mon indices :

1. \^ay ^b , V^
2. SV^+ J, a^oa'b% SbV^o-(a + b}-\

_ 1 /T a ^/~^ 77?

4. v^, ^¥, ^¥.
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Article 45.

2. 3AA=3a;x4^5px5V'^', da{a-i)^ xa(5a'b')^,

A //a r/a //a m,— nr—-
4. r r X r r X —r r > V « x \/a'\

Article 46.

_- _ - - ^i/?^

h a

J. JL i.

^5' ^v^' Jv^J ' Vc '
(<, +

j)i:-

Article 47.

Simplify the following

:

1. ^/x^y-a^x% ^-32a'°^^ l^lg-, {m^nxY)i

2. baV^d'h{x-y)\ 25abcVa'b\a-b)% ^a'"(a + b)-'^.

Article 49.

1. ^36^+^^ 'V/8i+ \/^+ -V^^TV.

3. 'V^S^^F+IeiJ^-^F+^aF; V49a+ 245-V^5a + 125.

Article 79.

1 o 1 a:— 2 3a; 15a;
1. Solve, ___ +_ = 37.

2.
<f ?._ ^ + ^ 3(a;— 1) _

a C 5

n ,, Sx-2 3a; + 2
^- -7 ir- = ^-^-

4 '^ ?ri - 3a; + 2

5 " 10 "^

2 be
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